2016-12-19: Reverse transcription of WSN-HA library 2 selected by mixtures of L7+L19 Each RT annealing reaction will be: 3.0 ul 10X AccuScript RT Buffer 1.2 ul of dNTP mix 3 ul of 5 uM WSN-For 3 ul of 5 uM WSN-For 3 ul of 5 uM WSN-Rev 8.8 ul RNA diluted to 1000 ng total in RNase-free water. ===== 19 ul total volume	Keep RNA and reaction plates on ice while setting up. Use HyClone molecular biology-grade water. Check heather's protocol for how much RNA to put in what volume of accuscript RT reaction, and then how much of that RT reaction to add to the subsequent PCR. Primers for RT/PCR: WSN-For: AGCAAAAGCAGGGGAAAATAAAAACAAC; Length: 28
First, thaw RNA on ice, flick tubes gently to mix, and spin down. Keep on ice. <u>Make annealing master mix for 30 reactions' worth (for the 26 reactions I will do) on ice:</u> 90 ul 10X AccuScript RT Buffer 36 ul of dNTP mix 90 ul of 5 uM WSN-For 90 ul of 5 uM WSN-Rev	bp; Tm= 60.9°C WSN-Rev: AGTAGAAACAAGGGTGTTTTTCCTTATATTTCTG; Length: 34 bp; Tm= 60.1°C The stocks should be at 100uM. Makes 1775 bp product.

Make RNA dilutions in the plate (on ice) layout and pipetting calculations as shown in next slide. Each well has 1000ng RNA diluted to 8.8ul in water. Once all RNA dilutions are made in plate, add 10.2 ul of annealing master mix to each well and mix by pipetting.

Heat to 65 C for 5 minutes, then cool to 4 C. Make the following master mixes while heating and cooling:

```
AccuScript master mix (for 29 rxn):
```

```
72.5 ul of water and 43.5 ul of AccuScript RT

RNAse block master mix (for 29 rxn):

94.25 ul of water and 21.75 ul of Rnase block
```

Bring the plate to ice. On ice, add 3 ul of DTT to each reaction. Then add:

4 ul of a mix of 2.5 ul of water and 1.5 ul of AccuScript RT

(4ul Accuscript mastermix),

4 ul of a mix of 3.25 ul of water and 0.75 ul RNase Block

(4ul RNAseblock mastermix)

reverse transcription: 42 C for 90 minutes, followed by 70 C for 15 minutes, then cooled to 4 C.

Total RT reaction volume is 30ul.

I goofed and skipped the DTT step until after I already started the block for the RT. I don't think the block actually started the 42C step - it was probably still heading the lid when I realized and stopped it, put the plate back on ice and added 3ul DTT to each.

2016-12-19: RT plate layout and pipetting calculations.

	1	2	3	4	5	6	7	8	9	10	11	12
Α												
в	1	2	3	4	5	6	7	8	9	10	11	12
С												
D	13	14	15	16	17	18	19	20	21	22	23	24
E												
F	25	26										
G												

Sample ID	<u>ng/ul</u>	<u>ul for 1000ng</u>	ul water to 8.8
1	337.5	2.96	5.84
2	443.5	2.25	6.55
3	220.6	4.53	4.27
4	428.8	2.33	6.47
5	435	2.30	6.50
6	184.8	5.41	3.39
7	495.6	2.02	6.78
8	435.4	2.30	6.50
9	288.6	3.47	5.33
10	388.8	2.57	6.23
11	394.6	2.53	6.27
12	205.2	4.87	3.93

Sample ID	<u>ng/ul</u>	<u>ul for 1000ng</u>	ul water to 8.8
13	489.5	2.04	6.76
14	370.9	2.70	6.10
15	412.4	2.42	6.38
16	418.2	2.39	6.41
17	267.6	3.74	5.06
18	162.4	6.16	2.64
19	473.7	2.11	6.69
20	483.9	2.07	6.73
21	270.3	3.70	5.10
22	403.9	2.48	6.32
23	212.9	4.70	4.10
24	222.5	4.49	4.31
25	384.3	2.60	6.20
26	355.1	2.82	5.98

	1	2	3	4	5	6	7	8	9	10	11	12
А												
В	1	2	3	4	5	6	7	8	9	10	11	12
С												
D	13	14	15	16	17	18	19	20	21	22	23	24
Е												
			27: no PCR									
F	25	26	template	28: 1e4	29: 1e5	30: 1e6	31: 1e7	32: 1e8				
G												

2016-12-19: PCR on cDNA to make full-length HA amplicons.

10 ng of WSN amplicon corresponds to 1e10 ssDNA molecules. So a 5 ng/ul dilution is 5e9 ssDNA/ul, or 1e10 ssDNA per 2 ul used in PCR. I am making a fresh 5ng/ul dilution, and making 10-fold dilutions by transferring 20ul to 180 ul to make **5e3**, **5e4**, **5e5**, **5e6** per ul to use as witness band standards.

Do in 50ul reactions: (make 33x master mix)

Each reaction:

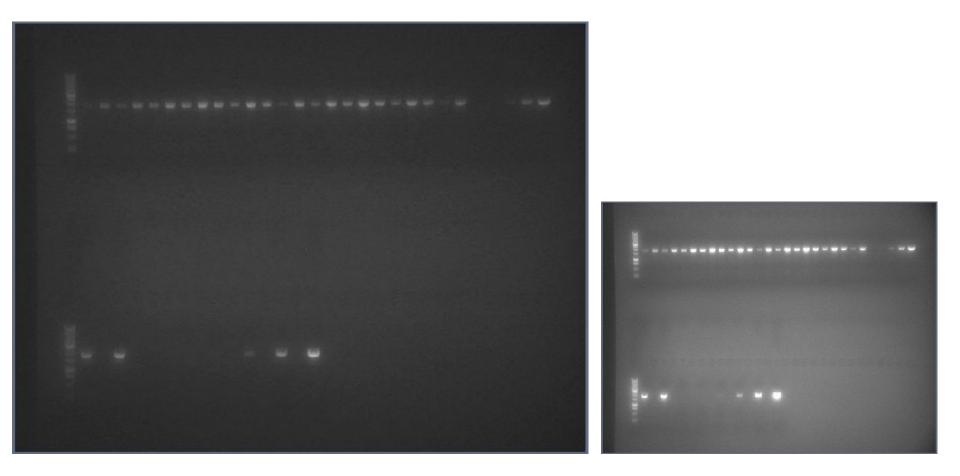
25 ul of 2X KOD Master Mix (825 ul)

- 3 ul of 5 uM WSN-for (99 ul)
- 3 ul of 5 uM WSN-rev (99 ul)
- 17 ul of water (561 ul)

2 ul template

Add 48 ul of PCR mastermix to each well, then add 2ul of template. Pipette all wells with multichannel a few times to mix.

Use the following PCR program (22 total PCR cycles):


1.95 C for 2:00 2.95 C for :20 3.70 C for :01 4.50 C for :30, cooling to 50 C at 0.5 C/second 5.70 C for :40 6.Goto 2, 21 times 7.4 C forever

Then check products on a 1% agarose gel (each lane: 5ul PCR product + 5ul water + 2ul 6x sample buffer).

Samples 28-32 use a known number of linear WSN HA amplicon molecules as template in each reaction, so that you can use band intensities on the gel to approximate how much cDNA was used as template for each PCR.

Bring a wt DNA sample amplified from plasmid into the workflow at this point. Plasmid #33 in the plasmid log should be pHW-WSN-HA. I will give you some of this.

For all these PCR: Use your own, fresh thaw tube of KOD (stays good at 4 C for a while, but start out with a fresh tube and keep it to yourself.) Top: 1, 13, 2, 14... 11, 23, 12, 24, 28.29.30.31.32. For 12, only half was loaded to gel. Bottom: 25-32, every other.

2016-12-19: Ampure XP cleanup of full-length amplicons.

I will purify all 24 PCR amplicons (some of these are negative controls and standard curves for witness band amplification, and some I don't plan to sequence, but will purify regardless). I will use 0.9X ampure beads. Each PCR was 50 ul and I used 5ul to run on the gel (and 10 ul for witness samples 28-32), so there remains **45ul of PCR to which I will add 40.5ul beads.**

- 1. Take bead aliquot from **vortexed stock** and allow to come to room temperature
- 2. Add 40.5 ul beads to each well and mix 10x
- 3. Incubate at RT for 10 minutes to bind
- 4. Put on magnet for 5 minutes
- 5. Aspirate ~5-10ul less than the total volume using multichannel, careful not to disrupt beads
- 6. Wash twice with 180ul fresh 80% ethanol (gently add and aspirate).
- 7. (During the second wash) Aspirate any remaining ethanol with multichannel, Air dry 10 min. I usually cover for these incubations with the lid of a tip box. When dried you'll see "caking" and slight cracking?
- 8. Add 60 ul of EB over the dried beads while on the rack; then remove from rack, mix beads by pipetting the 60 ul EB. Make sure beads from all wells are well resuspended. You might need to touch-up on individual wells with a single channel pipetter to resuspend.
- 9. Incubate 5 min to resuspend DNA
- 10. Put on magnet for 5 minutes
- 11. Transfer bead-free DNA solutions to a new plate ("2016.12.19 purified full-length amplicons")

It's ok to elute with 70 ul of EB and then transfer 65 ul of bead-free solution should be OK, to avoid carrying over stray beads.

Protocol is actually for 70% ethanol for wash steps

2016-12-19 Picogreen of full-length amplicons

Thaw the picogreen pouch ahead of time. Use the 20x TE to make a stock of 1x TE to use for the whole assay.

- 1. VORTEX and SPIN the DNA standard tube well to resuspend DNA. Then Make 2 standards at **2ng/ul by adding 4ul of the standard to 196ul TE**. Vortex to mix.
- 2. Add 99 ul (or 100 ul) 1xTE to all wells.
- 3. Add duplicates of 1 ul of ampure-purified products to the 99 ul TE wells to measure 1:101 dilutions of the samples in replicates as shown in the plate layout below. (sometimes multichanneling 1 ul is sketchy. Pipette with the same technique consistently. Try to watch all channels when you pipette to make sure you actually draw solution into each tip. Also helpful to watch as you eject to make sure there weren't any empty tips.)
- 4. Add 100ul of the independent standards to G1 and H1 to make the highest concentration 1ng/ul, and serially transferring 100ul across columns to make 1:2 dilutions.
- 5. In the dark, make picogreen working solution (I think this is 1:200 dilution?) (55ul to 11ml TE), and from a reservoir of this add 100 ul to all wells used in assay, **mixing 4 times by pipetting**, cover with aluminum foil to protect from light and incubate 5 minutes before reading on plate reader.

	1	2	3	4	5	6	7	8	9	10	11	12
А	1	2	3	4	5	6	7	8	9	10	11	12
В	1	2	3	4	5	6	7	8	9	10	11	12
С	13	14	15	16	17	18	19	20	21	22	23	24
D	13	14	15	16	17	18	19	20	21	22	23	24
			27: no									
			PCR									
Е	25	26	template	28: 1e4	29: 1e5	30: 1e6	31: 1e7	32: 1e8	TE	TE	TE	TE
			27: no									
			PCR									
F	25	26	template	28: 1e4	29: 1e5	30: 1e6	31: 1e7	32: 1e8	TE	TE	TE	TE
G	1.00E+00	5.00E-01	2.50E-01	1.25E-01	6.25E-02	3.13E-02	1.56E-02	7.81E-03	3.91E-03	1.95E-03	9.77E-04	4.88E-04
Н	1.00E+00	5.00E-01	2.50E-01	1.25E-01	6.25E-02	3.13E-02	1.56E-02	7.81E-03	3.91E-03	1.95E-03	9.77E-04	4.88E-04

Rows G and H are picogreen standard so that you can relate your samples to an absolute concentration of ds DNA. The standards in orange are PCR products that began with a certain number of molecules - it is not imperative to purify and quantify them but might be nice to see (?) --

2016.12.21 Round 1 PCR set up. Making two plates as shown below. Round 1 primers are 10uM stocks. For each primer pair (ampX_F/ampX_R), make a mix for 30 reaction's worth (actually only needing 26 reactions for each primer pair). To do this, for each of the 6 subamplicons make a primer mix by adding: **30ul F primer (10uM) + 30ul R primer (10uM) + 60ul water.** Final volume 120ul, each primer is 2.5uM in this final mixture. Each PCR gets 4ul of this combined F/R subamplicon primer pair. I make these 6 primer mixes in a labeled strip of tubes to facilitate multichanneling.

First make the 0.5 ng/ul dilution of the full-length amplicon plate as described below, then set up round 1 as follows.

Each round 1 PCR reaction will get (total volume of 24 ul):

12 ul 2X KOD Master Mix

4 ul of mixture of 2.5 uM forward primer + 2.5 uM reverse primer (0.42 uM final concentration each primer)

8 ul of 0.5 ng/ul template (4 ng total) taken from the dilution plate which is laid out to facilitate transferring 8 samples at a time, 6 times, to the 6 subamplicon reactions for those samples.

Set these reactions up with a multichannel with the format shown in slides below. You may want to only set up one plate at a time since you are making two plates. Set up on ice :-).

- 1. Dispense 12ul KOD to all wells (dispense from strip tubes; 170ul KOD in each of 8 tubes should be enough for 12 dispensings of 12 ul). Be careful not to dispense air bubbles (stop at the first stop like you're supposed to).
- 2. Add 4ul primers from a striptube of primer pairs 1-6 (6 transfers at a time to 27+ rows of 6) to all rows as indicated. I like to use a fresh row of 6 tips for each dispensing so that I can look at the box of tips and know which row I'm on.
- 3. Add templates to each column from the 0.5ng/ul plate, which is arranged to facilitate easy transfer using the multichannel 8 at a time (8ul). Basically, column 1 of the dilution plate is used for columns 1-6 of plate1; column 3 of dilution plate is used for columns 7-12 of plate1, column 5 of the dilution plate is used for columns 1-6 of plate 2, etc.

Seal with microfilm A, spin, and thermocycle as described here. I will run **9 PCR cycles.** With perfect efficiency, this gives a theoretical amplification of 512-fold, which would give about 340 ng of DNA per well (accounting for the fact that the created amplicons are only about 1/6 the length of the template). Using program "**ORRSUBR1**" on the Mastercycler (be careful becuase there is some other program called something like "ORRROUND1"), or if using C1000 I will save this

Using program "ORRSUBR1" on the Mastercycler (be careful becuase there is some other program called something like "ORRROUND1"), or if using C1000 I will save this program as "HA subamplicons R1".

- 1.95 C for 2:00
- 2. 95 C for :20
- 3. 70 C for :01
- 4. 54 C for :20
- 5. 70 C for :20
- 6. Goto 2, 8 times
- 7. 95 C for 1:00. This step ensures that identical pairs are not annealed at the end.
- 8.4 C forever

Make 0.5ng/ul dilutions of full-length amplicons in a new 96-well plate by first adding 100ul EB to the dilution plate columns 1, 3, 5, and 7, and then transfer these volumes of each sample from the purified full-length amplicons plate to the dilution plate. The dilution plate sample layout will facilitate setting up round 1 pcr.

				Destination well
			ul of sample to	(0.5ng/ul dilution
Source well	Selection #	ng/ul	dilution plate	plate)
B1	1	5.6	9.838	A1
B2	2	10.5	4.977	B1
B3	3	19.1	2.691	C1
B4	4	26.0	1.960	D1
B5	5	35.5	1.429	E1
B6	6	52.0	0.971	F1
B7	7	5.7	9.642	G1
B8	8	16.2	3.177	H1
B9	9	29.2	1.744	A3
B10	10	34.3	1.478	B3
B11	11	43.4	1.165	C3
B12	12	10.6	4.929	D3
D1	13	20.2	2.535	E3
D2	14	27.0	1.886	F3
D3	15	37.3	1.358	G3
D4	16	44.4	1.139	H3
D5	17	21.2	2.419	A5
D6	18	31.1	1.633	B5
D7	19	43.2	1.171	C5
D8	20	44.2	1.145	D5
D9	21	51.3	0.984	E5
D10	22	18.9	2.721	F5
D11	23	29.0	1.756	G5
D12	24	40.6	1.248	H5
F1	25	44.8	1.128	A7
F2	26	54.4	0.928	B7
	negative control		just EB	C7

Layouts for round 1 PCR. Make 0.5 ng/ul dilution plates using math on previous slide in 4 columns 1-8, 9-16, 17-24, 25-26 so that each column of 0.5ng/ul in >60ul EB can be multichanneled 6 times to the round 1 PCR plate.

PLATE 1

	subamp1	subamp2	subamp3	subamp4	subamp5	subamp6	subamp1	subamp2	subamp3	subamp4	subamp5	subamp6
	1	2	3	4	5	6	7	8	9	10	11	12
А			selec	tion 1					selec	tion 9		
В			selec	tion 2					select	ion 10		
С			selec	tion 3					select	ion 11		
D			selec	tion 4					select	ion 12		
Е			selec	tion 5					select	ion 13		
F			selec	tion 6			selection 14					
G			selec	tion 7					select	ion 15		
Н			selec	tion 8					select	ion 16		
TE 2	seque							s step. O is a nega				

PLATE 2

	subamp1	subamp2	subamp3	subamp4	subamp5	subamp6	subamp1	subamp2	subamp3	subamp4	subamp5	subamp6
	1	2	3	4	5	6	7	8	9	10	11	12
А			select	ion 17					select	ion 25		
в			select	ion 18			selection 26					
С			select	ion 19					water te	emplate		
D			select	ion 20								
Е			select	ion 21								
F			select	ion 22								
G	selection 23											
Н			select	ion 24								

Ampure purification of round 1 PCR products:

FIRST take the PCR product plate that has finished round 1 PCR, and Add 26 ul of EB to each well of the round 1 PCR products to bring the volume to 50 ul - this is important because it is hard to do the ampure bead purification with a small starting volume.

Then purify with 1x Ampure beads: (one plate at a time)

- 1. Take bead aliquot (~8.5ml (check how much you actually need?) from vortexed stock and allow to come to room temperature
- 2. Add 50 ul beads to each well and mix 10x (since you have a full plate for at least one of your round 1 plates this might be nice to do with a multichannel by aliquoting beads to a strip of tubes first).
- 3. Incubate at RT for 10 minutes to bind
- 4. Put on magnet for 5 minutes
- 5. Aspirate
- 6. Wash twice with 180ul fresh 80% ethanol
- 7. Air dry 10 min
- 8. disperse beads in 75 ul EB and THEN remove from rack, resuspend well by pipetting.
- 9. Incubate 5 min to resuspend DNA
- 10. Put on magnet for 5 minutes
- 11. Transfer bead-free DNA solutions to 2 new racks ("**purified. R1 subamplicons, Plate 1 of 2 and Plate 2 of 2**) with the same layout as the PCR plates above.

I will use four plates to quantify by picogreen.

Picogreen1:

plate 1, left half

	subamp 1	subamp 2	subamp 3	subamp 4	subamp 5	subamp 6						
	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>						
<u>A</u>			selec	tion 1								
<u>B</u>			Selec	tion 2								
<u>C</u>		Selection 3										
D			Selec	tion 4								
E			Selec	tion 5								
E			Selec	tion 6								
<u>G</u>			selec	tion 7								
<u>H</u>			selec	tion 8								

<u>7</u>	<u>8</u>	<u>9</u>
TE	1.00E+00	1.00E+00
TE	5.00E-01	5.00E-01
TE	2.50E-01	2.50E-01
TE	1.25E-01	1.25E-01
TE	6.25E-02	6.25E-02
TE	3.13E-02	3.13E-02
TE	1.56E-02	1.56E-02
TE	7.81E-03	7.81E-03

Picogreen2

: plate1,

right half

subamp 1	subamp 2	subamp 3	subamp 4	subamp 5	subamp 6				
<u>7</u>	<u>8</u>	<u>9</u>	<u>10</u>	<u>11</u>	<u>12</u>				
		selec	tion 9						
		select	ion 10						
		select	ion 11						
		select	ion 12						
		select	ion 13						
		select	ion 14						
	selection 15								
		select	ion 16						

	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>
<u>A</u>				1.00E+00	1.00E+00	TE
<u>B</u>				5.00E-01	5.00E-01	TE
<u>C</u>				2.50E-01	2.50E-01	TE
<u>D</u>				1.25E-01	1.25E-01	TE
<u>E</u>				6.25E-02	6.25E-02	TE
E				3.13E-02	3.13E-02	TE
<u>G</u>				1.56E-02	1.56E-02	TE
<u>H</u>				7.81E-03	7.81E-03	TE
D E E G				1.25E-01 6.25E-02 3.13E-02 1.56E-02	1.25E-01 6.25E-02 3.13E-02 1.56E-02	TE Te Te

picogreen3: plate #2, left half

	subamp 1	subamp 2	subamp 3	subamp 4	subamp 5	subamp 6	subamp 1	subamp 2	subamp 3
	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>
<u>A</u>			Select	ion 17			TE	1.00E+00	1.00E+00
<u>B</u>			Select	ion 18			TE	5.00E-01	5.00E-01
<u>C</u>			Select		TE	2.50E-01	2.50E-01		
D			Select	ion 20			TE	1.25E-01	1.25E-01
<u>E</u>			Select	ion 21			TE	6.25E-02	6.25E-02
E			Select	ion 22			TE	3.13E-02	3.13E-02
<u>G</u>			Select	ion 23			TE	1.56E-02	1.56E-02
H			Select	ion 24			TE	7.81E-03	7.81E-03

picogreen4

: plate #2,

right half

	subamp 1	subamp 2	subamp 3	subamp 4	subamp 5	subamp 6						
	<u>7</u>	<u>8</u>	<u>9</u>	<u>10</u>	<u>11</u>	<u>12</u>						
	selection 25											
			select	ion 26								
Water only												
1												

	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>
<u>A</u>				1.00E+00	1.00E+00	TE
<u>B</u>				5.00E-01	5.00E-01	TE
<u>C</u>				2.50E-01	2.50E-01	TE
D				1.25E-01	1.25E-01	TE
<u>E</u>				6.25E-02	6.25E-02	TE
<u>E</u>				3.13E-02	3.13E-02	TE
<u>G</u>				1.56E-02	1.56E-02	TE
<u>H</u>				7.81E-03	7.81E-03	TE

For each of the picogreen plates, here is the protocol:

Make two standards that can be used for all four plates: Make 2 standards at 2ng/ul by adding 10.2 ul of the standard to 500 ul TE.

- 1. Add 100 ul 1xTE to all wells used in assay
- 2. Make standard dilutions by adding 100 ul of the independent standards to the 1ng/ul standard wells, and serially transferring 100ul to make 1:2 dilutions.
- 3. Add 1 ul of ampure-purified products (sometimes multichanneling 1 ul is sketchy. Pipette with the same technique consistently. Try to watch all channels when you pipette to make sure you actually draw solution into each tip. Also helpful to watch as you eject to make sure there weren't any empty tips.) to the sample wells to measure (1:101) dilutions of the samples in replicates as shown in the plate layout below.
- 4. Make picogreen working solution 1:200 dilution, (40ul to 8ml TE; per plate), add 100 ul to all wells used in assay (mix 3 times when adding), cover to protect from light and incubate 5 minutes before reading on plate reader.

For both picogreen and ampure, you'll probably want to refer back to the detailed protocols earlier on, but note any differences.

Round 1 product concentrations:

	1	2	3	4	5	6
selection 1	2.399475411	1.547690499	2.330535669	2.142301696	3.43992651	1.741672134
selection 2	2.406371477	1.664027397	2.266226888	1.839963991	3.331181048	1.883427457
selection 3	1.929199098	1.238308242	1.77137741	1.381461674	2.259338704	1.261010878
selection 4	1.81480983	1.376912616	1.972701317	1.753096108	2.5144583	1.326892054
selection 5	1.913176647	1.379187109	1.890291866	1.536293678	2.553575523	1.222421101
selection 6	1.89715675	1.45656164	1.961251578	1.869700069	2.721677116	1.791948166
selection 7	1.926910021	1.538572914	2.149182922	2.112487928	2.650266635	1.240578152
selection 8	2.385684411	1.575049364	2.282300866	2.165240744	3.261804224	1.340530523
	1	2	3	4	5	6
selection 9	2.487581197	1.905342222	2.718054707	2.482625096	3.734420313	2.43306485
selection 10	2.685836282	2.234838279	2.948555574	2.718054707	3.573260219	2.29678154
selection 11	1.511539771	1.650222813	2.304214889	1.744338535	2.398373516	2.276959439
selection 12	1.759199572	1.717093763	2.460322813	1.682419473	2.50740574	2.269526213
selection 13	1.632886512	1.724524096	2.51484	1.729477676	2.239793652	2.274481693
selection 14	1.734431276	1.818645458	2.301737102	2.006908288	2.980778179	2.162987108
selection 15	1.86323166	1.974703617	2.884111846	2.264570748	3.21378658	2.44545478
selection 16	1.972226365	2.115914005	3.12206759	2.400851445	2.955991516	2.54705548
	1	2	3	4	5	6
selection 17	1.703112345	1.30415928	1.622336079	1.570078207	2.076310597	1.285173442
selection 18	1.676977014	1.299412709	1.638965107	1.91700917	1.928895435	1.418098587
selection 19	1.767269933	1.327893239	1.665097893	1.924140891	1.864713378	1.354002692
selection 20	1.886106362	1.422846931	1.729249394	2.392687451	1.824307285	1.437092371
selection 21	1.966933582	1.268561819	1.453712815	1.836191036	1.795787639	1.401479918
selection 22	2.173819651	1.247205387	1.584329626	2.045397142	1.95504632	1.318399436
selection 23	2.221391894	1.406228024	1.422846931	1.864713378	1.641340741	1.36587134
selection 24	2.397446429	1.479832296	1.764893546	2.2689685	2.114360627	1.337387334
	1	2	3	4	5	6
selection 25	2.525480934	1.741046481	2.433981163	2.656524518	2.755407641	1.963881371
selection 26	2.129701228	1.691512163	2.888876776	2.819673803	2.874048147	2.386989323

Now we want to normalize the concentrations of all the round 1 products so that we can: A) mix together the 6 subamplicons for each experimental sample in equal amounts, and B) dilute those mixtures so that a known number of molecular barcodes for each subamplicon are allowed through. <u>Make 0.4 ng/ul dilution plates</u> for round 1 products by first adding this much EB to each well, and then transferring 15 ul of round 1 products with the multichannel. The plate layouts of these 0.4ng/ul dilutions are identical to the plate layouts of the round 1 products.

Plate 1

diluent

volumes:

	1	2	3	4	5	6	7	8	9	10	11	12
А	74.98	43.04	72.40	65.34	114.00	50.31	78.28	56.45	86.93	78.10	125.04	76.24
В	75.24	47.40	69.98	54.00	109.92	55.63	85.72	68.81	95.57	86.93	119.00	71.13
С	57.34	31.44	51.43	36.80	69.73	32.29	41.68	46.88	71.41	50.41	74.94	70.39
D	53.06	36.63	58.98	50.74	79.29	34.76	50.97	49.39	77.26	48.09	79.03	70.11
E	56.74	36.72	55.89	42.61	80.76	30.84	46.23	49.67	79.31	49.86	68.99	70.29
F	56.14	39.62	58.55	55.11	87.06	52.20	50.04	53.20	71.32	60.26	96.78	66.11
G	57.26	42.70	65.59	64.22	84.38	31.52	54.87	59.05	93.15	69.92	105.52	76.70
Н	74.46	44.06	70.59	66.20	107.32	35.27	58.96	64.35	102.08	75.03	95.85	80.51

Plate 2

diluent

volumes:

	1	2	3	4	5	6	7	8	9	10	11	12
А	48.87	33.91	45.84	43.88	62.86	33.19	79.71	50.29	76.27	84.62	88.33	58.65
В	47.89	33.73	46.46	56.89	57.33	38.18	64.86	48.43	93.33	90.74	92.78	74.51
С	51.27	34.80	47.44	57.16	54.93	35.78						
D	55.73	38.36	49.85	74.73	53.41	38.89						
E	58.76	32.57	39.51	53.86	52.34	37.56						
F	66.52	31.77	44.41	61.70	58.31	34.44						
G	68.30	37.73	38.36	54.93	46.55	36.22						
н	74.90	40.49	51.18	70.09	64.29	35.15						

Pooled/Diluted Round 1 subamplicon products plates: For each experimental sample, the six subamplicon products from round 1 PCR are now mixed together in equal amounts since they can all be used in a single round 2 PCR to append the same experiment-specific index barcode. I will use the following plate setups to first pool together equal amounts of each of the 6 subamplicons for each experimental sample (using columns 1 and 7 to make the initial pools), and then dilute out these pools to use an appropriate dilution for round 2 PCR to control the barcode complexity going forward from this point.

1. Pool the 0.4 ng/ul concentration-normalized products that you just painstakingly made for each experimental samples (**15 ul of the 0.4ng/ul of each subamplicon**) into a single 0.4ng/ul pool for each experimental sample 1-26 as shown below

2. then make the appropriate 1:15 dilutions (columns 2,3,4 and 8,9,10) and finally a 1:5 dilution (into columns 5 and 11) as indicated, to achieve the following ng/ul. For the 1:15 dilutions, transfer **10 ul to 140 ul of EB**; for the 1:5 dilution transfer **10 ul to 40 ul EB**.

PLATE 1:

	1: 0.4ng/ul pool	2:1:15 of col 1		4:1:15 of col 3	5:1:5 of col 4	6: empty	-	8:1:15 of col 7	9:1:15 of col 8	10:1:15 of col 9	11:1:5 of col 10	12: empty
A	selection 1						selection 9					
В	selection 2						selection 10]				
с	selection 3						selection 11					
D	selection 4						selection 12					
E	selection 5						selection 13					
F	selection 6						selection 14					
G	selection 7						selection 15					
н	selection 8	2.67E-02	1.78E-03	1.19E-04	2.37E-05		selection 16	2.67E-02	1.78E-03	1.19E-04	2.37E-05	

PLATE 2:

	1: 0.4ng/ul pool	2:1:15 of col 1		4:1:15 of col 3	5:1:5 of col 4	6: empty	J	8:1:15 of col 7			11:1:5 of col 10	12: empty
A	selection 17						selection 25					
В	selection 18			۱ ا			selection 26			ļ I	ļ	
С	selection 19			۱ ا						l I	ļ	
D	selection 20			۱ ا	l l					l l	ļ	
E	selection 21			۱ ا	l l					l l	ļ	
F	selection 22			۱ ا	l l					l l	ļ	
G	selection 23			۱ ا	l l					l l	ļ	
н	selection 24	2.67E-02	1.78E-03	1.19E-04	2.37E-05			2.67E-02	1.78E-03	1.19E-04	2.37E-05	

Each of the two lanes on the HiSeq will provide at least 100 million paired reads.

For this particular experiment, I want **1.5E5 barcodes (this is** *lower* than what I used in the Viruses paper to characterize the plasmid mutant libraries and mutant virus libraries -- because in antibody selection i don't need such great depth to see the escape mutations which are at relatively high frequency --- so what this number is for you will probably be higher?) for each subamplicon in each sample, which means 7.5E4 dsDNA molecules per subamplicon per sample, since the dissociation step at the end of round 1 PCR results in unique barcodes on each ssDNA molecule in the final duplexes.

7.5E4 dsDNA molecules per subamplicon per sample, * 6 subamplicons in each sample = 4.5E5 dsDNA molecules per sample in each round 2 PCR, so that within each sample's round 2 PCR there will be 1.5E5 unique barcodes for each of the 6 subamplicons.

So each of my round 2 PCRs gets 4.5E5 dsDNA molecules of pooled sample as template, which corresponds to 0.000198 ng of dsDNA 407bp long.

In other words, 1.98e-4 ng of the pooled subamplicons for each experimental sample results in 7.5E4 dsDNA molecules for each subamplicon in the sample, for 1.5E5 total barcodes for each subamplicon.

Therefore, round 2 PCR will use: 8.354 ul of dilution column 5 or 11 (the column corresponding to 2.37E-5 ng/ul).

Set up a plate in this layout for round 2 pcr: (but first, look at next slide, need to assign an illumina index to each sample)

	1	2	3	4	5	6	7	8
A	selection 1		selection 9		selection 17		selection 25	
В	selection 2		selection 10		selection 18		selection 26	
С	selection 3		selection 11		selection 19		26, no R primer	
D	selection 4		selection 12		selection 20			
E	selection 5		selection 13		selection 21			
F	selection 6		selection 14		selection 22			
G	selection 7		selection 15		selection 23			
Н	selection 8		selection 16		selection 24			

Each Round 2 PCR:

20 ul of 2X KOD Master Mix + **4 ul** of 5 uM Rnd2ForUniversal + **3.65 ul** water (*make 29x MM: 580ul KOD* + *116 ul R2UniF 5uM* + *105.85 water*) **4 ul** of 5 uM of the appropriate Rnd2RevIndex as indicated on following slide.

8.354 ul template taken from the appropriate column 5 or 11 from the appropriate dilution plate

(then mix all wells by pipetting, seal with microfilm A, spin, thermalcycler)

======

40 ul of final volume

Here is the PCR reaction:

1.95 C for 2:00

2.95 C for :20

3.70 C for :01

4.55 C for :20

5.70 C for :20

6.Goto 2, 23 times

7.4 C forever

Freeze at -20 overnight (I did but you don't have to) before purifying with ampure:

Add **40ul of beads** to each well and mix 10x. Adsorb for 10 minutes, put on magnet for 5 minutes. Aspirate. Wash 2x with 180ul fresh 80% ethanol, dry on magnet, remove from magnet, resuspend in **75ul EB**. Transfer to a fresh plate with the same layout.

Selection	Round2Rev Index	dilution plate source	round 2 plate destination	
1	NF01 Rnd2Rev	plate 1, column 5	column 1	
2	NF03 Rnd2Rev	plate 1, column 5	column 1	
3	NF08 Rnd2Rev	plate 1, column 5	column 1	
4	NF09 Rnd2Rev	plate 1, column 5	column 1	
5	NF10 Rnd2Rev	plate 1, column 5	column 1	
6	NF11 Rnd2Rev	plate 1, column 5	column 1	
7	TS22Rnd2rev	plate 1, column 5	column 1	I recommend that you use
8	TS25Rnd2rev	plate 1, column 5	column 1	these 26 primers, plus —ONE more: NF36 to cover
9	TS06Rnd2rev	plate 1, column 11	column 3	your 27th sample.
10	TS12Rnd2rev	plate 1, column 11	column 3	
11	TS19Rnd2rev	plate 1, column 11	column 3	You will have to get an
12	TS13Rnd2rev	plate 1, column 11	column 3	aliquot of the NF36 primer,
13	TS14Rnd2rev	plate 1, column 11	column 3	possibly from Orr as he
14	TS15Rnd2rev	plate 1, column 11	column 3	might be the only one who
15	TS18Rnd2rev	plate 1, column 11	column 3	has used it in the past.
16	TS20Rnd2rev	plate 1, column 11	column 3	Keep in mind the
17	TS21Rnd2rev	plate 2, column 5	column 5	concentrations if you get
18	TS23Rnd2rev	plate 2, column 5	column 5	an aliquot from Orr.
19	TS27Rnd2rev	plate 2, column 5	column 5	
20	NF29Rnd2rev	plate 2, column 5	column 5	Mike's tubes are all at
21	NF30Rnd2rev	plate 2, column 5	column 5	5uM; Orr's might be at
22	NF31Rnd2rev	plate 2, column 5	column 5	10uM?
23	NF32Rnd2rev	plate 2, column 5	column 5	
24	NF33Rnd2rev	plate 2, column 5	column 5	
25	NF34Rnd2rev	plate 2, column 11	column 7	
26	NF35Rnd2rev	plate 2, column 11	column 7	
26 no primer	no primer	plate 2, B11	C7	

Then picogreen in duplicate:

- 1. Make 2 standards at **2ng/ul by adding 4ul of the standard to 196ul TE**.
- 2. Add 100 ul 1xTE to all wells.
- 3. Add 1 ul of ampure-purified products to measure 1:101 dilutions of the samples in replicates as shown in the plate layout below.
- 4. Make standard dilutions by adding 100ul of the independent standards to the 1ng/ul standard wells, and serially transferring 100ul to make 1:2 dilutions.
- 5. Make picogreen working solution (50ul to 10ml TE), add 100 ul to all wells used in assay, cover to protect from light and incubate 5 minutes before reading on plate reader.

	1	2	3	4	5	6	7	8	9	10	11
A	selection 1	selection 1	selection 9	selection 9	selection 17	selection 17	selection 25	selection 25	TE	1.00E+00	1.00E+00
В	selection 2	selection 2	selection 10	selection 10	selection 18	selection 18	selection 26	selection 26	TE	5.00E-01	5.00E-01
							26, no R	26, no R			
С	selection 3	selection 3	selection 11	selection 11	selection 19	selection 19	primer	primer	TE	2.50E-01	2.50E-01
D	selection 4	selection 4	selection 12	selection 12	selection 20	selection 20	TE	TE	TE	1.25E-01	1.25E-01
E	selection 5	selection 5	selection 13	selection 13	selection 21	selection 21	TE	TE	TE	6.25E-02	6.25E-02
F	selection 6	selection 6	selection 14	selection 14	selection 22	selection 22	TE	TE	TE	3.13E-02	3.13E-02
G	selection 7	selection 7	selection 15	selection 15	selection 23	selection 23	TE	TE	TE	1.56E-02	1.56E-02
Н	selection 8	selection 8	selection 16	selection 16	selection 24	selection 24	TE	TE	TE	7.81E-03	7.81E-03

	ng/ul	mix vol	SOURCE
Selection 1	11.18	5.37	A1
Selection 2	11.74	5.11	B1
Selection 3	11.66	5.15	C1
Selection 4	12.00	5.00	D1
Selection 5	11.43	5.25	E1
Selection 6	11.98	5.01	F1
Selection 7	11.95	5.02	G1
Selection 8	12.88	4.66	H1
Selection 9	5.01	11.98	A3
Selection 10	5.54	10.83	B3
Selection 11	5.67	10.59	C3
Selection 12	6.13	9.79	D3

You might want to use a NEW gel extraction kit, since we have some idea that the older kits might damage DNA more?

Mix 60ng of each, final volume ~200ul.

Add 100ul of the pool to 20ul of 6x sample buffer and run on 2% agarose.

Got the expected single band somewhere below 500bp.

Gel extracted using two columns for the 500mg slice, stored DNA overnight at -20 before ampure/picogreen.

<u>12-25</u>

Purify gel extraction DNA with 1.58x beads:

Add 139ul of beads to 88ul sample and mix 10x. Adsorb for 10 minutes, put on magnet for 5 minutes. Aspirate. Wash 2x with 180ul fresh 80% ethanol, dry on magnet, remove from magnet, resuspend in **60ul EB.** Transfer to a fresh low-stick tube. ("12.25 size-sel lib")

Picogreen 1:100 dilutions in triplicate.

Nanodrop is clean; 2.9ng/ul. Picogreen is 2.68ng/ul.

I will make a dilution at 2 nM to give to the sequencing core. For 472bp dsDNA, this is approximately 18.5 ng in 30ul.

So I will add 6.9ul to 23.1ul EB to make 2nM in 30 ul to give the core.

Notes:

Email Andy Marty (<jamarty@fredhutch.org>) to tell him that you're going to submit sequencing samples soon. Email him ahead of time to ask him to purchase the reagent kit for paired-end 250bp reads on the hiseq; give him the appropriate hutch budget number: 218586

Submit order form on : http://hutchbase.fhcrc.org/base2/

Rapid run mode, 2x250

2017-1-12: qRT-PCR

First make 10ng/ul dilutions in the following layout by adding the following volumes of RNA to 100ul of water:

	1	2	3	4	5	6	7	8	9	10	11	12
Α	sel-1	sel-2	sel-3	sel-4	sel-5	sel-6	sel-7	sel-8	sel-9	sel-10	sel-11	sel-12
в												
С	sel-13	sel-14	sel-15	sel-16	sel-17	sel-18	sel-19	sel-20	sel-21	sel-22	sel-23	sel-24
D												
Е	sel-25	sel-26										
F												
G		28. 5e4 (rep A)	29. 5e3 (rep A)	30. 5e2 (rep A)		32. No virus (rep A)	33. 5e5 (rep B)	34. 5e4 (rep B)				38. No virus (rep B)
Н												

		ul RNA to						
	ng/ul	diluent		070.0	0 774	27. 5e5 (rep A)	276.7	3.750
sel-1	337.5	3.053	sel-14	370.9	2.771	28. 5e4 (rep A)	290.2	3.569
sel-2	443.5	2.307	sel-15	412.4	2.485	29. 5e3 (rep A)	363.1	2.832
sel-3	220.6	4.748	sel-16	418.2	2.450	30. 5e2 (rep A)	496.4	2.056
sel-4	428.8	2.388	sel-17	267.6	3.882	31. 5e1 (rep A)	410.2	2.499
sel-5	435	2.353	sel-18	162.4	6.562			
			sel-19	473.7	2.157	32. No virus (rep A)	312.1	3.310
sel-6	184.8	5.721	sel-20	483.9	2.110	33. 5e5 (rep B)	413.3	2.480
sel-7	495.6	2.059		270.3	3.842	34. 5e4 (rep B)	455.1	2.247
sel-8	435.4	2.351	sel-21			35. 5e3 (rep B)	421.6	2.430
sel-9	288.6	3.589	sel-22	403.9	2.539	36. 5e2 (rep B)	446.2	2.293
sel-10	388.8	2.640	sel-23	212.9	4.929			
sel-11	394.6	2.600	sel-24	222.5	4.706	37. 5e1 (rep B)	346.6	2.971
			sel-25	384.3	2.672	38. No virus (rep B)	215.8	4.859
sel-12	205.2	5.123	sel-26	355.1	2.898			
sel-13	489.5	2.086	301-20	555.1	2.090			

2017-1-12: qRT-PCR

Each qRT-PCR reaction (20ul total volume) will contain:

10 ul One-Step SYBR Green Master Mix
0.4 ul RT (or water for RT- controls)
1 ul of 5 uM forward primer (250nM final)
1 ul of 5 uM reverse primer (250nM final)
4 ul RNA (40 ng total)
3.6 ul water to bring volume to 25ul.

I make master mixes as so:

Need 76, make 84 RT+ MM: 840 ul One-Step MM + 33.6 ul qScript RT + 302.4 ul water Need 12, make 16x RT- MM: 160 ul One-Step MM + 64 ul H2O

Split RT+ MM into two 41x MM tubes (each tube gets 41*14=574 ul) and add NP primers or GAPDH primers to respective tubes (each tube gets 41 ul of each F and R primer from 5uM stocks).

Aliquot the two RT+ NP and RT+ GAPDH master mixes to appropriate rows as labeled below (16 ul per well).

Split RT- MM into two 7x MM tubes (each tube gets 98 ul) and add NP primers or GAPDH primers to respective tubes (each tube gets 7 ul of each F and R primer).

Aliquot the RT- NP and RT- GAPDH master mixes to the appropriate noRT wells (16ul per well).

Lastly, Add 4 ul RNA (from 10ng/ul dilutions) to each as indicated using a multichannel and the dilution plate already made.

Cycling conditions:

50C for 10 minutes

95C for 5 minutes

40 cycles of: 95C for 15 sec, 58C for 30 sec with data acquisition

(Followed by instrument's default melt curve program)

	1	2	3	4	5	6	7	8	9	10	11	12
A - NP	sel-1	sel-2	sel-3	sel-4	sel-5	sel-6	sel-7	sel-8	sel-9	sel-10	sel-11	sel-12
B - GAPDH	sel-1	sel-2	sel-3	sel-4	sel-5	sel-6	sel-7	sel-8	sel-9	sel-10	sel-11	sel-12
C - NP	sel-13	sel-14	sel-15	sel-16	sel-17	sel-18	sel-19	sel-20	sel-21	sel-22	sel-23	sel-24
D - GAPDH	sel-13	sel-14	sel-15	sel-16	sel-17	sel-18	sel-19	sel-20	sel-21	sel-22	sel-23	sel-24
E - NP	sel-25	sel-26					33. 5e5 (rep B) NORT	34. 5e4 (rep B) NORT	35. 5e3 (rep B) NORT	36. 5e2 (rep B) NORT	37. 5e1 (rep B) NORT	38. No virus (rep B) noRT
F - GAPDH	sel-25	sel-26					33. 5e5 (rep B) NORT	34. 5e4 (rep B) NORT	35. 5e3 (rep B) NORT	36. 5e2 (rep B) NORT	37. 5e1 (rep B) NORT	38. No virus (rep B) noRT
G - NP	27. 5e5 (rep A)	28. 5e4 (rep A)	29. 5e3 (rep A)	30. 5e2 (rep A)	31. 5e1 (rep A)	32. No virus (rep A)	33. 5e5 (rep B)	34. 5e4 (rep B)	35. 5e3 (rep B)	36. 5e2 (rep B)	37. 5e1 (rep B)	38. No virus (rep B)
H - GAPDH	27. 5e5 (rep A)	28. 5e4 (rep A)	29. 5e3 (rep A)	30. 5e2 (rep A)	31. 5e1 (rep A)	32. No virus (rep A)	33. 5e5 (rep B)	34. 5e4 (rep B)	35. 5e3 (rep B)	36. 5e2 (rep B)	37. 5e1 (rep B)	38. No virus (rep B)