In [1]:
######## snakemake preamble start (automatically inserted, do not edit) ########
import sys;sys.path.extend(['/fh/fast/bloom_j/software/miniforge3/envs/seqneut-pipeline/lib/python3.13/site-packages', '/fh/fast/bloom_j/computational_notebooks/jbloom/2025/flu-seqneut-2025/seqneut-pipeline', '/fh/fast/bloom_j/computational_notebooks/jbloom/2025/flu-seqneut-2025', '/fh/fast/bloom_j/software/miniforge3/envs/seqneut-pipeline/bin', '/fh/fast/bloom_j/software/miniforge3/envs/seqneut-pipeline/lib/python3.13', '/fh/fast/bloom_j/software/miniforge3/envs/seqneut-pipeline/lib/python3.13/lib-dynload', '/fh/fast/bloom_j/software/miniforge3/envs/seqneut-pipeline/lib/python3.13/site-packages', '/home/jbloom/.cache/snakemake/snakemake/source-cache/runtime-cache/tmpfro_n8p6/file/fh/fast/bloom_j/computational_notebooks/jbloom/2025/flu-seqneut-2025/seqneut-pipeline/notebooks', '/fh/fast/bloom_j/computational_notebooks/jbloom/2025/flu-seqneut-2025/seqneut-pipeline/notebooks']);import pickle;from snakemake import script;script.snakemake = pickle.loads(b'\x80\x04\x95R\xdd\x00\x00\x00\x00\x00\x00\x8c\x10snakemake.script\x94\x8c\tSnakemake\x94\x93\x94)\x81\x94}\x94(\x8c\x05input\x94\x8c\x0csnakemake.io\x94\x8c\nInputFiles\x94\x93\x94)\x81\x94(\x8c3results/barcode_counts/plate12_EPIHK_EPIHK_1_40.csv\x94\x8c3results/barcode_counts/plate12_EPIHK_EPIHK_1_92.csv\x94\x8c4results/barcode_counts/plate12_EPIHK_EPIHK_1_212.csv\x94\x8c4results/barcode_counts/plate12_EPIHK_EPIHK_1_487.csv\x94\x8c5results/barcode_counts/plate12_EPIHK_EPIHK_1_1119.csv\x94\x8c5results/barcode_counts/plate12_EPIHK_EPIHK_1_2575.csv\x94\x8c5results/barcode_counts/plate12_EPIHK_EPIHK_1_5921.csv\x94\x8c6results/barcode_counts/plate12_EPIHK_EPIHK_1_13619.csv\x94\x8c3results/barcode_counts/plate12_EPIHK_EPIHK_2_40.csv\x94\x8c3results/barcode_counts/plate12_EPIHK_EPIHK_2_92.csv\x94\x8c4results/barcode_counts/plate12_EPIHK_EPIHK_2_212.csv\x94\x8c4results/barcode_counts/plate12_EPIHK_EPIHK_2_487.csv\x94\x8c5results/barcode_counts/plate12_EPIHK_EPIHK_2_1119.csv\x94\x8c5results/barcode_counts/plate12_EPIHK_EPIHK_2_2575.csv\x94\x8c5results/barcode_counts/plate12_EPIHK_EPIHK_2_5921.csv\x94\x8c6results/barcode_counts/plate12_EPIHK_EPIHK_2_13619.csv\x94\x8c3results/barcode_counts/plate12_EPIHK_EPIHK_3_40.csv\x94\x8c3results/barcode_counts/plate12_EPIHK_EPIHK_3_92.csv\x94\x8c4results/barcode_counts/plate12_EPIHK_EPIHK_3_212.csv\x94\x8c4results/barcode_counts/plate12_EPIHK_EPIHK_3_487.csv\x94\x8c5results/barcode_counts/plate12_EPIHK_EPIHK_3_1119.csv\x94\x8c5results/barcode_counts/plate12_EPIHK_EPIHK_3_2575.csv\x94\x8c5results/barcode_counts/plate12_EPIHK_EPIHK_3_5921.csv\x94\x8c6results/barcode_counts/plate12_EPIHK_EPIHK_3_13619.csv\x94\x8c3results/barcode_counts/plate12_EPIHK_EPIHK_4_40.csv\x94\x8c3results/barcode_counts/plate12_EPIHK_EPIHK_4_92.csv\x94\x8c4results/barcode_counts/plate12_EPIHK_EPIHK_4_212.csv\x94\x8c4results/barcode_counts/plate12_EPIHK_EPIHK_4_487.csv\x94\x8c5results/barcode_counts/plate12_EPIHK_EPIHK_4_1119.csv\x94\x8c5results/barcode_counts/plate12_EPIHK_EPIHK_4_2575.csv\x94\x8c5results/barcode_counts/plate12_EPIHK_EPIHK_4_5921.csv\x94\x8c6results/barcode_counts/plate12_EPIHK_EPIHK_4_13619.csv\x94\x8c3results/barcode_counts/plate12_EPIHK_EPIHK_5_40.csv\x94\x8c3results/barcode_counts/plate12_EPIHK_EPIHK_5_92.csv\x94\x8c4results/barcode_counts/plate12_EPIHK_EPIHK_5_212.csv\x94\x8c4results/barcode_counts/plate12_EPIHK_EPIHK_5_487.csv\x94\x8c5results/barcode_counts/plate12_EPIHK_EPIHK_5_1119.csv\x94\x8c5results/barcode_counts/plate12_EPIHK_EPIHK_5_2575.csv\x94\x8c5results/barcode_counts/plate12_EPIHK_EPIHK_5_5921.csv\x94\x8c6results/barcode_counts/plate12_EPIHK_EPIHK_5_13619.csv\x94\x8c3results/barcode_counts/plate12_EPIHK_EPIHK_6_40.csv\x94\x8c3results/barcode_counts/plate12_EPIHK_EPIHK_6_92.csv\x94\x8c4results/barcode_counts/plate12_EPIHK_EPIHK_6_212.csv\x94\x8c4results/barcode_counts/plate12_EPIHK_EPIHK_6_487.csv\x94\x8c5results/barcode_counts/plate12_EPIHK_EPIHK_6_1119.csv\x94\x8c5results/barcode_counts/plate12_EPIHK_EPIHK_6_2575.csv\x94\x8c5results/barcode_counts/plate12_EPIHK_EPIHK_6_5921.csv\x94\x8c6results/barcode_counts/plate12_EPIHK_EPIHK_6_13619.csv\x94\x8c3results/barcode_counts/plate12_EPIHK_EPIHK_7_40.csv\x94\x8c3results/barcode_counts/plate12_EPIHK_EPIHK_7_92.csv\x94\x8c4results/barcode_counts/plate12_EPIHK_EPIHK_7_212.csv\x94\x8c4results/barcode_counts/plate12_EPIHK_EPIHK_7_487.csv\x94\x8c5results/barcode_counts/plate12_EPIHK_EPIHK_7_1119.csv\x94\x8c5results/barcode_counts/plate12_EPIHK_EPIHK_7_2575.csv\x94\x8c5results/barcode_counts/plate12_EPIHK_EPIHK_7_5921.csv\x94\x8c6results/barcode_counts/plate12_EPIHK_EPIHK_7_13619.csv\x94\x8c3results/barcode_counts/plate12_EPIHK_EPIHK_8_40.csv\x94\x8c3results/barcode_counts/plate12_EPIHK_EPIHK_8_92.csv\x94\x8c4results/barcode_counts/plate12_EPIHK_EPIHK_8_212.csv\x94\x8c4results/barcode_counts/plate12_EPIHK_EPIHK_8_487.csv\x94\x8c5results/barcode_counts/plate12_EPIHK_EPIHK_8_1119.csv\x94\x8c5results/barcode_counts/plate12_EPIHK_EPIHK_8_2575.csv\x94\x8c5results/barcode_counts/plate12_EPIHK_EPIHK_8_5921.csv\x94\x8c6results/barcode_counts/plate12_EPIHK_EPIHK_8_13619.csv\x94\x8c3results/barcode_counts/plate12_EPIHK_EPIHK_9_40.csv\x94\x8c3results/barcode_counts/plate12_EPIHK_EPIHK_9_92.csv\x94\x8c4results/barcode_counts/plate12_EPIHK_EPIHK_9_212.csv\x94\x8c4results/barcode_counts/plate12_EPIHK_EPIHK_9_487.csv\x94\x8c5results/barcode_counts/plate12_EPIHK_EPIHK_9_1119.csv\x94\x8c5results/barcode_counts/plate12_EPIHK_EPIHK_9_2575.csv\x94\x8c5results/barcode_counts/plate12_EPIHK_EPIHK_9_5921.csv\x94\x8c6results/barcode_counts/plate12_EPIHK_EPIHK_9_13619.csv\x94\x8c/results/barcode_counts/plate12_EPIHK_none-1.csv\x94\x8c/results/barcode_counts/plate12_EPIHK_none-2.csv\x94\x8c/results/barcode_counts/plate12_EPIHK_none-3.csv\x94\x8c/results/barcode_counts/plate12_EPIHK_none-4.csv\x94\x8c/results/barcode_counts/plate12_EPIHK_none-5.csv\x94\x8c/results/barcode_counts/plate12_EPIHK_none-6.csv\x94\x8c/results/barcode_counts/plate12_EPIHK_none-7.csv\x94\x8c/results/barcode_counts/plate12_EPIHK_none-8.csv\x94\x8c2results/barcode_fates/plate12_EPIHK_EPIHK_1_40.csv\x94\x8c2results/barcode_fates/plate12_EPIHK_EPIHK_1_92.csv\x94\x8c3results/barcode_fates/plate12_EPIHK_EPIHK_1_212.csv\x94\x8c3results/barcode_fates/plate12_EPIHK_EPIHK_1_487.csv\x94\x8c4results/barcode_fates/plate12_EPIHK_EPIHK_1_1119.csv\x94\x8c4results/barcode_fates/plate12_EPIHK_EPIHK_1_2575.csv\x94\x8c4results/barcode_fates/plate12_EPIHK_EPIHK_1_5921.csv\x94\x8c5results/barcode_fates/plate12_EPIHK_EPIHK_1_13619.csv\x94\x8c2results/barcode_fates/plate12_EPIHK_EPIHK_2_40.csv\x94\x8c2results/barcode_fates/plate12_EPIHK_EPIHK_2_92.csv\x94\x8c3results/barcode_fates/plate12_EPIHK_EPIHK_2_212.csv\x94\x8c3results/barcode_fates/plate12_EPIHK_EPIHK_2_487.csv\x94\x8c4results/barcode_fates/plate12_EPIHK_EPIHK_2_1119.csv\x94\x8c4results/barcode_fates/plate12_EPIHK_EPIHK_2_2575.csv\x94\x8c4results/barcode_fates/plate12_EPIHK_EPIHK_2_5921.csv\x94\x8c5results/barcode_fates/plate12_EPIHK_EPIHK_2_13619.csv\x94\x8c2results/barcode_fates/plate12_EPIHK_EPIHK_3_40.csv\x94\x8c2results/barcode_fates/plate12_EPIHK_EPIHK_3_92.csv\x94\x8c3results/barcode_fates/plate12_EPIHK_EPIHK_3_212.csv\x94\x8c3results/barcode_fates/plate12_EPIHK_EPIHK_3_487.csv\x94\x8c4results/barcode_fates/plate12_EPIHK_EPIHK_3_1119.csv\x94\x8c4results/barcode_fates/plate12_EPIHK_EPIHK_3_2575.csv\x94\x8c4results/barcode_fates/plate12_EPIHK_EPIHK_3_5921.csv\x94\x8c5results/barcode_fates/plate12_EPIHK_EPIHK_3_13619.csv\x94\x8c2results/barcode_fates/plate12_EPIHK_EPIHK_4_40.csv\x94\x8c2results/barcode_fates/plate12_EPIHK_EPIHK_4_92.csv\x94\x8c3results/barcode_fates/plate12_EPIHK_EPIHK_4_212.csv\x94\x8c3results/barcode_fates/plate12_EPIHK_EPIHK_4_487.csv\x94\x8c4results/barcode_fates/plate12_EPIHK_EPIHK_4_1119.csv\x94\x8c4results/barcode_fates/plate12_EPIHK_EPIHK_4_2575.csv\x94\x8c4results/barcode_fates/plate12_EPIHK_EPIHK_4_5921.csv\x94\x8c5results/barcode_fates/plate12_EPIHK_EPIHK_4_13619.csv\x94\x8c2results/barcode_fates/plate12_EPIHK_EPIHK_5_40.csv\x94\x8c2results/barcode_fates/plate12_EPIHK_EPIHK_5_92.csv\x94\x8c3results/barcode_fates/plate12_EPIHK_EPIHK_5_212.csv\x94\x8c3results/barcode_fates/plate12_EPIHK_EPIHK_5_487.csv\x94\x8c4results/barcode_fates/plate12_EPIHK_EPIHK_5_1119.csv\x94\x8c4results/barcode_fates/plate12_EPIHK_EPIHK_5_2575.csv\x94\x8c4results/barcode_fates/plate12_EPIHK_EPIHK_5_5921.csv\x94\x8c5results/barcode_fates/plate12_EPIHK_EPIHK_5_13619.csv\x94\x8c2results/barcode_fates/plate12_EPIHK_EPIHK_6_40.csv\x94\x8c2results/barcode_fates/plate12_EPIHK_EPIHK_6_92.csv\x94\x8c3results/barcode_fates/plate12_EPIHK_EPIHK_6_212.csv\x94\x8c3results/barcode_fates/plate12_EPIHK_EPIHK_6_487.csv\x94\x8c4results/barcode_fates/plate12_EPIHK_EPIHK_6_1119.csv\x94\x8c4results/barcode_fates/plate12_EPIHK_EPIHK_6_2575.csv\x94\x8c4results/barcode_fates/plate12_EPIHK_EPIHK_6_5921.csv\x94\x8c5results/barcode_fates/plate12_EPIHK_EPIHK_6_13619.csv\x94\x8c2results/barcode_fates/plate12_EPIHK_EPIHK_7_40.csv\x94\x8c2results/barcode_fates/plate12_EPIHK_EPIHK_7_92.csv\x94\x8c3results/barcode_fates/plate12_EPIHK_EPIHK_7_212.csv\x94\x8c3results/barcode_fates/plate12_EPIHK_EPIHK_7_487.csv\x94\x8c4results/barcode_fates/plate12_EPIHK_EPIHK_7_1119.csv\x94\x8c4results/barcode_fates/plate12_EPIHK_EPIHK_7_2575.csv\x94\x8c4results/barcode_fates/plate12_EPIHK_EPIHK_7_5921.csv\x94\x8c5results/barcode_fates/plate12_EPIHK_EPIHK_7_13619.csv\x94\x8c2results/barcode_fates/plate12_EPIHK_EPIHK_8_40.csv\x94\x8c2results/barcode_fates/plate12_EPIHK_EPIHK_8_92.csv\x94\x8c3results/barcode_fates/plate12_EPIHK_EPIHK_8_212.csv\x94\x8c3results/barcode_fates/plate12_EPIHK_EPIHK_8_487.csv\x94\x8c4results/barcode_fates/plate12_EPIHK_EPIHK_8_1119.csv\x94\x8c4results/barcode_fates/plate12_EPIHK_EPIHK_8_2575.csv\x94\x8c4results/barcode_fates/plate12_EPIHK_EPIHK_8_5921.csv\x94\x8c5results/barcode_fates/plate12_EPIHK_EPIHK_8_13619.csv\x94\x8c2results/barcode_fates/plate12_EPIHK_EPIHK_9_40.csv\x94\x8c2results/barcode_fates/plate12_EPIHK_EPIHK_9_92.csv\x94\x8c3results/barcode_fates/plate12_EPIHK_EPIHK_9_212.csv\x94\x8c3results/barcode_fates/plate12_EPIHK_EPIHK_9_487.csv\x94\x8c4results/barcode_fates/plate12_EPIHK_EPIHK_9_1119.csv\x94\x8c4results/barcode_fates/plate12_EPIHK_EPIHK_9_2575.csv\x94\x8c4results/barcode_fates/plate12_EPIHK_EPIHK_9_5921.csv\x94\x8c5results/barcode_fates/plate12_EPIHK_EPIHK_9_13619.csv\x94\x8c.results/barcode_fates/plate12_EPIHK_none-1.csv\x94\x8c.results/barcode_fates/plate12_EPIHK_none-2.csv\x94\x8c.results/barcode_fates/plate12_EPIHK_none-3.csv\x94\x8c.results/barcode_fates/plate12_EPIHK_none-4.csv\x94\x8c.results/barcode_fates/plate12_EPIHK_none-5.csv\x94\x8c.results/barcode_fates/plate12_EPIHK_none-6.csv\x94\x8c.results/barcode_fates/plate12_EPIHK_none-7.csv\x94\x8c.results/barcode_fates/plate12_EPIHK_none-8.csv\x94\x8c\xbb/home/jbloom/.cache/snakemake/snakemake/source-cache/runtime-cache/tmpfro_n8p6/file/fh/fast/bloom_j/computational_notebooks/jbloom/2025/flu-seqneut-2025/seqneut-pipeline/notebook_funcs.py\x94e}\x94(\x8c\x06_names\x94}\x94(\x8c\ncount_csvs\x94K\x00KP\x86\x94\x8c\tfate_csvs\x94KPK\xa0\x86\x94\x8c\x0enotebook_funcs\x94K\xa0N\x86\x94u\x8c\x12_allowed_overrides\x94]\x94(\x8c\x05index\x94\x8c\x04sort\x94eh\xb6h\x06\x8c\x0eAttributeGuard\x94\x93\x94)\x81\x94}\x94\x8c\x04name\x94h\xb6sbh\xb7h\xb9)\x81\x94}\x94h\xbch\xb7sbh\xaeh\x06\x8c\tNamedlist\x94\x93\x94)\x81\x94(h\nh\x0bh\x0ch\rh\x0eh\x0fh\x10h\x11h\x12h\x13h\x14h\x15h\x16h\x17h\x18h\x19h\x1ah\x1bh\x1ch\x1dh\x1eh\x1fh h!h"h#h$h%h&h\'h(h)h*h+h,h-h.h/h0h1h2h3h4h5h6h7h8h9h:h;h<h=h>h?h@hAhBhChDhEhFhGhHhIhJhKhLhMhNhOhPhQhRhShThUhVhWhXhYe}\x94(h\xac}\x94h\xb4]\x94(h\xb6h\xb7eh\xb6h\xb9)\x81\x94}\x94h\xbch\xb6sbh\xb7h\xb9)\x81\x94}\x94h\xbch\xb7sbubh\xb0h\xc0)\x81\x94(hZh[h\\h]h^h_h`hahbhchdhehfhghhhihjhkhlhmhnhohphqhrhshthuhvhwhxhyhzh{h|h}h~h\x7fh\x80h\x81h\x82h\x83h\x84h\x85h\x86h\x87h\x88h\x89h\x8ah\x8bh\x8ch\x8dh\x8eh\x8fh\x90h\x91h\x92h\x93h\x94h\x95h\x96h\x97h\x98h\x99h\x9ah\x9bh\x9ch\x9dh\x9eh\x9fh\xa0h\xa1h\xa2h\xa3h\xa4h\xa5h\xa6h\xa7h\xa8h\xa9e}\x94(h\xac}\x94h\xb4]\x94(h\xb6h\xb7eh\xb6h\xb9)\x81\x94}\x94h\xbch\xb6sbh\xb7h\xb9)\x81\x94}\x94h\xbch\xb7sbubh\xb2h\xaaub\x8c\x06output\x94h\x06\x8c\x0bOutputFiles\x94\x93\x94)\x81\x94(\x8c)results/plates/plate12_EPIHK/qc_drops.yml\x94\x8c1results/plates/plate12_EPIHK/frac_infectivity.csv\x94\x8c*results/plates/plate12_EPIHK/curvefits.csv\x94\x8c-results/plates/plate12_EPIHK/curvefits.pickle\x94e}\x94(h\xac}\x94(\x8c\x08qc_drops\x94K\x00N\x86\x94\x8c\x14frac_infectivity_csv\x94K\x01N\x86\x94\x8c\x08fits_csv\x94K\x02N\x86\x94\x8c\x0bfits_pickle\x94K\x03N\x86\x94uh\xb4]\x94(h\xb6h\xb7eh\xb6h\xb9)\x81\x94}\x94h\xbch\xb6sbh\xb7h\xb9)\x81\x94}\x94h\xbch\xb7sbh\xdbh\xd5h\xddh\xd6h\xdfh\xd7h\xe1h\xd8ub\x8c\r_params_store\x94h\x06\x8c\x06Params\x94\x93\x94)\x81\x94(}\x94(\x8c\x07barcode\x94}\x94(K\x00\x8c\x10AAACCCATAAGACCCC\x94K\x01\x8c\x10AAAGACCTTTAACTCT\x94K\x02\x8c\x10AAAGCTCTTTTCGTTC\x94K\x03\x8c\x10AAAGGCGCGCCTTCAA\x94K\x04\x8c\x10AAAGTAGCAGAGGATT\x94K\x05\x8c\x10AAATTCACAATATCCA\x94K\x06\x8c\x10AACACGTAGAACCGCC\x94K\x07\x8c\x10AACAGAAGTCCATGTA\x94K\x08\x8c\x10AACCACCCCAGAGATG\x94K\t\x8c\x10AACCGTACCGCGTTTA\x94K\n\x8c\x10AACCTACGAGACGTAA\x94K\x0b\x8c\x10AACGGTTCCGACTAAG\x94K\x0c\x8c\x10AACTGCGTTCATCGAT\x94K\r\x8c\x10AACTTCCCTGACTGCT\x94K\x0e\x8c\x10AACTTCCGTCGCCTGA\x94K\x0f\x8c\x10AAGAAGACTTTGTGAT\x94K\x10\x8c\x10AAGAAGCTATAGAAGT\x94K\x11\x8c\x10AAGATTGATTGAAGTT\x94K\x12\x8c\x10AAGCCCAGCGGGTGAT\x94K\x13\x8c\x10AAGCGGTGATGTGATT\x94K\x14\x8c\x10AAGGGGCCTCATAATG\x94K\x15\x8c\x10AAGGTCCCTATGTAAT\x94K\x16\x8c\x10AAGTATTGCTACACAT\x94K\x17\x8c\x10AAGTTAAGAGAAAGTT\x94K\x18\x8c\x10AAGTTAGTAGACCCAC\x94K\x19\x8c\x10AATCGCTGGCACCCGT\x94K\x1a\x8c\x10AATGAAACAATCGAAC\x94K\x1b\x8c\x10AATGCGAGCATGTCAA\x94K\x1c\x8c\x10AATTCGTGAGTACTAG\x94K\x1d\x8c\x10ACAAAGTCTCGAGAAG\x94K\x1e\x8c\x10ACAAGATTCGGGGGAC\x94K\x1f\x8c\x10ACAATCTGAACCATAC\x94K \x8c\x10ACACGGGTTGGCTGTA\x94K!\x8c\x10ACAGTACGATCTACGC\x94K"\x8c\x10ACAGTCCACCATTGAG\x94K#\x8c\x10ACATTTTCCAATAGGT\x94K$\x8c\x10ACCAGCAATGAGTTGT\x94K%\x8c\x10ACCCCCGGAGCTTGGC\x94K&\x8c\x10ACCGAATGAATCATCC\x94K\'\x8c\x10ACCGATTCACGAATAA\x94K(\x8c\x10ACCGTTGTACACACCA\x94K)\x8c\x10ACGCAAATAGACCGAA\x94K*\x8c\x10ACGGGGATTGGCTGTT\x94K+\x8c\x10ACGTATGATTTTCGAG\x94K,\x8c\x10ACGTCCATTAAGATCA\x94K-\x8c\x10ACGTGTCTCCGAGCAA\x94K.\x8c\x10ACTACGAGGCTACGTA\x94K/\x8c\x10ACTCTGGCTCGCTAAT\x94K0\x8c\x10ACTGTCTAGAAATTTT\x94K1\x8c\x10AGAAAATCTCAGATAC\x94K2\x8c\x10AGACCATCGCACCCAA\x94K3\x8c\x10AGACCGCCAGTTTCGT\x94K4\x8c\x10AGAGCTAAAAAGAGGA\x94K5\x8c\x10AGATCCACCCTATAGT\x94K6\x8c\x10AGATCCCAGGTCCTTT\x94K7\x8c\x10AGCATAGGGATATGTG\x94K8\x8c\x10AGCATCTAACAGATAG\x94K9\x8c\x10AGCCCATGCTGGGGAT\x94K:\x8c\x10AGCGACATCGCCCTTT\x94K;\x8c\x10AGCTCCTGGGGTATCA\x94K<\x8c\x10AGCTGAATTAAGTATG\x94K=\x8c\x10AGGAAAGAAACTGGAG\x94K>\x8c\x10AGGACTATAGTTGGCA\x94K?\x8c\x10AGGAGTATGAAGAGCG\x94K@\x8c\x10AGGCCCGTAAGGACTA\x94KA\x8c\x10AGGTTCAGACTCTTGC\x94KB\x8c\x10AGTAAACATGCATTGG\x94KC\x8c\x10AGTATTTGCGCTTCAA\x94KD\x8c\x10AGTCCTATCCTCAAAT\x94KE\x8c\x10AGTCGTTTAGATAGTT\x94KF\x8c\x10AGTGTTGAATAGGCGA\x94KG\x8c\x10AGTGTTGGCTTGGTTA\x94KH\x8c\x10AGTTCCATAGGCATGG\x94KI\x8c\x10AGTTGGGGTCTCCCTT\x94KJ\x8c\x10AGTTTTTATAACTTGC\x94KK\x8c\x10ATAACGTTTGTGCAAA\x94KL\x8c\x10ATAACTGAGGGCATTG\x94KM\x8c\x10ATACACGAGGTTGTGA\x94KN\x8c\x10ATACACGCATGTGCCA\x94KO\x8c\x10ATAGAAAATTATCCGC\x94KP\x8c\x10ATAGAATCGCAAATTA\x94KQ\x8c\x10ATAGGATATATGGCTG\x94KR\x8c\x10ATATAAAAAACTTAGT\x94KS\x8c\x10ATCAGGATAATCGCGC\x94KT\x8c\x10ATCCGATTTAAAGGCA\x94KU\x8c\x10ATGGCCCACGGGCATA\x94KV\x8c\x10ATGGGATTGGAGAAAC\x94KW\x8c\x10ATGGTTTTACGTCCAT\x94KX\x8c\x10ATTAGATTATAACGTA\x94KY\x8c\x10ATTAGGGCTACGTGAG\x94KZ\x8c\x10ATTATCATATCTAATA\x94K[\x8c\x10ATTCCGAATGGGGTAG\x94K\\\x8c\x10ATTTAAATTCGAGGAC\x94K]\x8c\x10ATTTACTCATTATACG\x94K^\x8c\x10ATTTTTCTATGGCTAC\x94K_\x8c\x10CAAAAGCAGCACGATA\x94K`\x8c\x10CAAAATCTACGGCGAC\x94Ka\x8c\x10CAAATGCTGCATTAGG\x94Kb\x8c\x10CAATTCGCCGTTCCCC\x94Kc\x8c\x10CACAGACAATAAAAAA\x94Kd\x8c\x10CACCAATCTTCGAACT\x94Ke\x8c\x10CACCATCAGCACCTAG\x94Kf\x8c\x10CACCGCGCCGAGCACC\x94Kg\x8c\x10CACCTAGGATCGCACT\x94Kh\x8c\x10CACGGCCGGCGAACTC\x94Ki\x8c\x10CACGGGCTAATGTCTC\x94Kj\x8c\x10CACTAGATGTACAGTC\x94Kk\x8c\x10CAGAACCTCGTTGTCT\x94Kl\x8c\x10CAGATAGTGATGAACA\x94Km\x8c\x10CAGGCTCTAGAGCTCT\x94Kn\x8c\x10CATAAAAGACTGTATA\x94Ko\x8c\x10CATGGGAATTGCCACT\x94Kp\x8c\x10CATGTGGAGCCCAACA\x94Kq\x8c\x10CATTGAGACGCGCAAG\x94Kr\x8c\x10CATTTCTGATGAATTG\x94Ks\x8c\x10CCAACACAAAAAATTA\x94Kt\x8c\x10CCAAGCTTGGCGCATC\x94Ku\x8c\x10CCCCCGCTGTTTAAAA\x94Kv\x8c\x10CCCCTCCTCTAAAGTT\x94Kw\x8c\x10CCCTATGAAATAAGCT\x94Kx\x8c\x10CCCTGCGCGGCTCGGG\x94Ky\x8c\x10CCCTTTACGGATCTCT\x94Kz\x8c\x10CCGCATTAGCGGGAGG\x94K{\x8c\x10CCGCGCACGTTTAGAG\x94K|\x8c\x10CCGGATAAATCAGAAC\x94K}\x8c\x10CCTGGGTTAAGTTGTG\x94K~\x8c\x10CCTTGATGCATTCCCG\x94K\x7f\x8c\x10CCTTTCTCAAAACATA\x94K\x80\x8c\x10CGAAAACATTACAAAT\x94K\x81\x8c\x10CGAAACACGTCCCAGT\x94K\x82\x8c\x10CGAACCGCAGACACGT\x94K\x83\x8c\x10CGACTCCACGGACGCC\x94K\x84\x8c\x10CGATCTTTACGAAAAA\x94K\x85\x8c\x10CGCACTTTACGAGACA\x94K\x86\x8c\x10CGCAGCATTGGTCGCC\x94K\x87\x8c\x10CGCGACACCCTTCCGG\x94K\x88\x8c\x10CGGACCCTAGATGGTA\x94K\x89\x8c\x10CGGCCAGGGAATCAAA\x94K\x8a\x8c\x10CGGGAAATGTAAATGA\x94K\x8b\x8c\x10CGGGAACATACATAAC\x94K\x8c\x8c\x10CGGGAATCTCCCATAC\x94K\x8d\x8c\x10CGGGGACAAGATTGTA\x94K\x8e\x8c\x10CGGTCGGGACTCATCT\x94K\x8f\x8c\x10CGTACAGTGTAATCGA\x94K\x90\x8c\x10CGTACGTATGTCCCAG\x94K\x91\x8c\x10CGTGACCCCCTCCAAC\x94K\x92\x8c\x10CGTGTACCCTTCAGCA\x94K\x93\x8c\x10CGTTAACGGCCTATCC\x94K\x94\x8c\x10CGTTCAGCGATAACGG\x94K\x95\x8c\x10CGTTTTTGGTTCGAGG\x94K\x96\x8c\x10CTAATTTAAGTATCAA\x94K\x97\x8c\x10CTAGCACAGCGTAGGC\x94K\x98\x8c\x10CTATAAACCGTTTGTA\x94K\x99\x8c\x10CTATATTGCCCGGAAG\x94K\x9a\x8c\x10CTATCTTAATCTACAG\x94K\x9b\x8c\x10CTATTTAACAGACGTA\x94K\x9c\x8c\x10CTCAAATAATTGGCGC\x94K\x9d\x8c\x10CTCAATGTCGTAGGAT\x94K\x9e\x8c\x10CTCCTAGGGGACGATT\x94K\x9f\x8c\x10CTCTTACGCTCCTACG\x94K\xa0\x8c\x10CTGAACTTATCTGTGG\x94K\xa1\x8c\x10CTGAACTTGTCGATAT\x94K\xa2\x8c\x10CTGAGCTGCCAATAAG\x94K\xa3\x8c\x10CTGAGGGATTCAACTC\x94K\xa4\x8c\x10CTGGAGGCCTGGCCCC\x94K\xa5\x8c\x10CTGTACCTGCAGTTGA\x94K\xa6\x8c\x10CTTACAGAATACTAGA\x94K\xa7\x8c\x10CTTACTGCGCGAGAGT\x94K\xa8\x8c\x10CTTAGGTATTATATGC\x94K\xa9\x8c\x10CTTCGGCTCTTGATTA\x94K\xaa\x8c\x10CTTTTCTAGTACGCTT\x94K\xab\x8c\x10GAAAGCCCCGTGCAAT\x94K\xac\x8c\x10GAAAGTCCCTATGATG\x94K\xad\x8c\x10GAAATCCCCAAATAAC\x94K\xae\x8c\x10GAAGAAACTATAACCA\x94K\xaf\x8c\x10GAAGTACGCTGAATGA\x94K\xb0\x8c\x10GAAGTGCGTATTGAGT\x94K\xb1\x8c\x10GAAGTGCTGCTGAAGT\x94K\xb2\x8c\x10GAATAATAGAACAGAG\x94K\xb3\x8c\x10GACAAAAGGGACATAT\x94K\xb4\x8c\x10GACCCCTTGTAAGATG\x94K\xb5\x8c\x10GACGGGATGGGCACGT\x94K\xb6\x8c\x10GAGAGCTGCAGAAGCG\x94K\xb7\x8c\x10GAGCTTGCTATGGATC\x94K\xb8\x8c\x10GAGGGGATACGTCACC\x94K\xb9\x8c\x10GAGGGGTAGAGATACG\x94K\xba\x8c\x10GATCACGCAGAAAAAG\x94K\xbb\x8c\x10GATCGCCACTGATAAG\x94K\xbc\x8c\x10GATCGCCATCGACTTC\x94K\xbd\x8c\x10GATCTTGGGGAGAGTC\x94K\xbe\x8c\x10GATTCAGATGCCCACC\x94K\xbf\x8c\x10GCAAACAGTGTAGTTG\x94K\xc0\x8c\x10GCAACGAGGTGTAACC\x94K\xc1\x8c\x10GCAGCGTGCCGGTCAT\x94K\xc2\x8c\x10GCATCCTCAACTCCTA\x94K\xc3\x8c\x10GCATGGAACTAACTCC\x94K\xc4\x8c\x10GCCAGCTCGTATCCCT\x94K\xc5\x8c\x10GCCATTTACTGAAGGG\x94K\xc6\x8c\x10GCCGCTGCGGCGTGTG\x94K\xc7\x8c\x10GCCGGCGTTAGTGTCA\x94K\xc8\x8c\x10GCCTTTGCGCGCAGTC\x94K\xc9\x8c\x10GCGAAGTTTCATAGCG\x94K\xca\x8c\x10GGTTAACTTTGGAAGC\x94K\xcb\x8c\x10GTAAGCAAAGTTGACC\x94K\xcc\x8c\x10GTAAGCTTCATGGAGT\x94K\xcd\x8c\x10GTAATTCGCATGCGGA\x94K\xce\x8c\x10GTACCCAGTTCCTGCG\x94K\xcf\x8c\x10GTAGAACTGCGGCCCC\x94K\xd0\x8c\x10GTAGATACTAGGACCA\x94K\xd1\x8c\x10GTCAAGTTACGGATGG\x94K\xd2\x8c\x10GTCCGTCAGCATAAAC\x94K\xd3\x8c\x10GTCGCATCCTGGAATG\x94K\xd4\x8c\x10GTCGCCGCTAATCCGA\x94K\xd5\x8c\x10GTGAGCGAGAAAAGCA\x94K\xd6\x8c\x10GTGCATCCTAGTGACG\x94K\xd7\x8c\x10GTGCGATTGTCCGGAA\x94K\xd8\x8c\x10GTGGTATCAAGCCGGG\x94K\xd9\x8c\x10GTTATTATGACTTCAT\x94K\xda\x8c\x10GTTGCTCCGACACGCC\x94K\xdb\x8c\x10TAAAAAGCCTCCATGA\x94K\xdc\x8c\x10TAACGTGATTTCTCGA\x94K\xdd\x8c\x10TAATAAGCCAGCAAGA\x94K\xde\x8c\x10TACAAGAGAGGGGTCC\x94K\xdf\x8c\x10TACATACCGACGCAGT\x94K\xe0\x8c\x10TACCAATGTCATTTGA\x94K\xe1\x8c\x10TACCTGCTGCGGAACG\x94K\xe2\x8c\x10TACTAATGCCGTTGTC\x94K\xe3\x8c\x10TACTAGCAATAAAATC\x94K\xe4\x8c\x10TACTGATAACCCTGCG\x94K\xe5\x8c\x10TAGCATTGTCGGAAAG\x94K\xe6\x8c\x10TAGCTGATAGTAACTC\x94K\xe7\x8c\x10TATATTAGTAACATAA\x94K\xe8\x8c\x10TATCCAAGGGACGGAC\x94K\xe9\x8c\x10TATGTCGTATCCACAG\x94K\xea\x8c\x10TATTAAGAGAAGTGCG\x94K\xeb\x8c\x10TATTCCTAACTAGCGA\x94K\xec\x8c\x10TCAATCGGGGGCTAAA\x94K\xed\x8c\x10TCACGACTCGACTAAC\x94K\xee\x8c\x10TCATGGGTGTACGAGA\x94K\xef\x8c\x10TCCACACCCCTAGCTA\x94K\xf0\x8c\x10TCCAGCGCGGTAAGAG\x94K\xf1\x8c\x10TCCCCGTGGTTTGACA\x94K\xf2\x8c\x10TCGAACGAAGTAGGAG\x94K\xf3\x8c\x10TCGAGTTAATATGCGC\x94K\xf4\x8c\x10TCGATTACTAGCCGGA\x94K\xf5\x8c\x10TCGCTTCAACTAAAAA\x94K\xf6\x8c\x10TCGTCCGTTGGGAACT\x94K\xf7\x8c\x10TCGTCGCACTACTGCT\x94K\xf8\x8c\x10TCTAACTCTCGCGGCA\x94K\xf9\x8c\x10TCTCAGCTCTTAGCCG\x94K\xfa\x8c\x10TCTGGAAACGATCCCC\x94K\xfb\x8c\x10TCTTAGAGTGAACGAT\x94K\xfc\x8c\x10TCTTAGTCCTCGTATG\x94K\xfd\x8c\x10TCTTATTAGGCGGCAT\x94K\xfe\x8c\x10TCTTGACATAGCGATG\x94K\xff\x8c\x10TCTTTACCACTGCATC\x94M\x00\x01\x8c\x10TGACAACAATACAAAT\x94M\x01\x01\x8c\x10TGAGTTCATAGCTCCA\x94M\x02\x01\x8c\x10TGATCTGTGACATTGC\x94M\x03\x01\x8c\x10TGATCTTTTACATTTA\x94M\x04\x01\x8c\x10TGCAGTGGTATACATA\x94M\x05\x01\x8c\x10TGCGGTGGTCGATCCG\x94M\x06\x01\x8c\x10TGCTATTCCGGCGCGG\x94M\x07\x01\x8c\x10TGGAATCGTCACCGAT\x94M\x08\x01\x8c\x10TGGTCCGCTTCATGCT\x94M\t\x01\x8c\x10TGTAATAGGCGTCACA\x94M\n\x01\x8c\x10TGTCCGGATAAAGTAG\x94M\x0b\x01\x8c\x10TGTGGAGCGCCCTTAC\x94M\x0c\x01\x8c\x10TGTTGAGCCAGTCTGA\x94M\r\x01\x8c\x10TGTTGTAATCTGAATA\x94M\x0e\x01\x8c\x10TTAATGTAGCCGCTCC\x94M\x0f\x01\x8c\x10TTACGAATTTGATTCC\x94M\x10\x01\x8c\x10TTCATCAAGTTGGTGC\x94M\x11\x01\x8c\x10TTCTGTCCAGACTCGT\x94M\x12\x01\x8c\x10TTGAAAAAATCATAAA\x94M\x13\x01\x8c\x10TTGACTCACCGAATAA\x94M\x14\x01\x8c\x10TTGCAATTGAAACATA\x94M\x15\x01\x8c\x10TTGCTCCTGAGTAGTA\x94M\x16\x01\x8c\x10TTGGGCACTAAATTAA\x94M\x17\x01\x8c\x10TTGGGGAACGGGAAGC\x94M\x18\x01\x8c\x10TTGTATCAGTCGCGCC\x94M\x19\x01\x8c\x10TTTATATCCAACACCA\x94M\x1a\x01\x8c\x10TTTATATCGAGATTCA\x94M\x1b\x01\x8c\x10TTTCACAGAACCTATC\x94M\x1c\x01\x8c\x10TTTCAGCGTTGTTTTG\x94M\x1d\x01\x8c\x10TTTCGTGATACTCACA\x94u\x8c\x06strain\x94}\x94(K\x00\x8c\x19A/Minnesota/126/2024_H3N2\x94K\x01\x8c*A/Singapore/INFIMH-16-0019/2016X-307A_H3N2\x94K\x02\x8c\x18A/Wisconsin/67/2022_H1N1\x94K\x03\x8c\x16A/Lisboa/216/2023_H3N2\x94K\x04\x8c\x14A/Darwin/9/2021_H3N2\x94K\x05\x8c A/Cambodia/e0826360/2020egg_H3N2\x94K\x06\x8c\x15A/Busan/277/2025_H1N1\x94K\x07\x8c"A/New_York/GKISBBBE61555/2025_H3N2\x94K\x08\x8c\x15A/Kansas/14/2017_H3N2\x94K\t\x8c\x14A/Texas/50/2012_H3N2\x94K\n\x8c"A/Wisconsin/NIRC-IS-1028/2024_H3N2\x94K\x0b\x8c\x1aA/Washington/284/2024_H3N2\x94K\x0c\x8c\x16A/Oregon/265/2024_H3N2\x94K\r\x8c\x17A/Victoria/46/2024_H3N2\x94K\x0e\x8c\x16A/Vermont/13/2025_H3N2\x94K\x0f\x8c\x16A/Indiana/46/2024_H3N2\x94K\x10\x8c!A/DistrictOfColumbia/27/2023_H3N2\x94K\x11\x8c\x18A/Tasmania/836/2024_H3N2\x94K\x12\x8c\x19A/Colombia/1851/2024_H3N2\x94K\x13\x8c\x19A/Victoria/3482/2024_H3N2\x94K\x14\x8c\x1cA/BurkinaFaso/3131/2023_H3N2\x94K\x15\x8c\x13A/Utah/39/2025_H1N1\x94K\x16\x8c\x19A/HongKong/4801/2014_H3N2\x94K\x17\x8c!A/Victoria/4897/2022_IVR-238_H1N1\x94K\x18\x8c\x1aA/Texas/ISC-1274/2025_H3N2\x94K\x19\x8c\x17A/Slovenia/49/2024_H3N2\x94K\x1aj(\x02\x00\x00K\x1b\x8c\x14A/Iowa/123/2024_H1N1\x94K\x1c\x8c\x1fA/Uganda/UVRI_KIS6850_2024_H1N1\x94K\x1d\x8c\x17A/Michigan/45/2015_H1N1\x94K\x1e\x8c\x17A/Victoria/96/2025_H3N2\x94K\x1f\x8c&A/Massachusetts/BI_MGH-23147/2025_H3N2\x94K j)\x02\x00\x00K!\x8c\x19A/Victoria/3599/2024_H1N1\x94K"\x8c\x18A/Tennessee/04/2025_H1N1\x94K#\x8c\x1fA/Queensland/IN000692/2024_H3N2\x94K$\x8c#A/Michigan/UM-10062100736/2025_H3N2\x94K%\x8c\x16A/Lisboa/188/2023_H1N1\x94K&\x8c\x1aA/Texas/ISC-1148/2025_H3N2\x94K\'\x8c"A/Massachusetts/ISC-1679/2025_H1N1\x94K(j\x1c\x02\x00\x00K)\x8c\x1aA/Texas/50/2012X-223A_H3N2\x94K*\x8c#A/France/IDF-IPP29542/2023-egg_H3N2\x94K+\x8c$A/Switzerland/860423897313/2023_H3N2\x94K,\x8c\x14A/Ohio/259/2024_H1N1\x94K-\x8c\x1eA/Punta_Arenas/83659/2024_H3N2\x94K.\x8c\x1cA/Pennsylvania/288/2024_H3N2\x94K/\x8c\x1dA/Colorado/ISC-1416/2024_H3N2\x94K0\x8c,A/France/PAC-RELAB-HCL024172122101/2024_H3N2\x94K1\x8c\x1aA/Texas/ISC-1342/2025_H3N2\x94K2\x8c\x16A/Thailand/8/2022_H3N2\x94K3\x8c A/Saskatchewan/RV04835/2024_H3N2\x94K4j&\x02\x00\x00K5\x8c\x18A/Bangkok/P176/2025_H1N1\x94K6\x8c"A/Wisconsin/NIRC-IS-1111/2025_H1N1\x94K7\x8c#A/Sao_Paulo/358026766-IAL/2024_H3N2\x94K8\x8c\x1eA/Rhode_Island/15446/2025_H3N2\x94K9\x8c!A/India/Pune-NIV24_3439/2024_H3N2\x94K:\x8c\x18A/Minnesota/97/2024_H3N2\x94K;j2\x02\x00\x00K<\x8c\x1fA/Switzerland/9715293/2013_H3N2\x94K=j\x11\x02\x00\x00K>\x8c#A/Saint-Petersburg/RII-04/2025_H1N1\x94K?\x8c\x1dA/Switzerland/47775/2024_H3N2\x94K@\x8c\x19A/Victoria/3480/2024_H3N2\x94KAj*\x02\x00\x00KB\x8c\x15A/Hawaii/70/2019_H1N1\x94KC\x8c\x1bA/Rhode_Island/66/2024_H3N2\x94KD\x8c\x19A/Wisconsin/588/2019_H1N1\x94KE\x8c\x1cA/Ghana/FS-25-0256/2025_H3N2\x94KF\x8c\x18A/Ecuador/1385/2024_H3N2\x94KGj:\x02\x00\x00KHj\x18\x02\x00\x00KI\x8c\x1cA/Amapa/021563-IEC/2024_H3N2\x94KJ\x8c\x1aA/Zacapa/FLU-012/2025_H1N1\x94KKj\x14\x02\x00\x00KLj@\x02\x00\x00KM\x8c%A/Shanghai-Huangpu/SWL12109/2024_H1N1\x94KN\x8c\x16A/Nevada/216/2024_H3N2\x94KOj5\x02\x00\x00KPjJ\x02\x00\x00KQ\x8c%A/Switzerland/9715293/2013NIB-88_H3N2\x94KR\x8c\x15A/Sydney/43/2025_H3N2\x94KS\x8c\x18A/Pakistan/306/2024_H1N1\x94KT\x8c\x17A/Brisbane/02/2018_H1N1\x94KU\x8c\x13A/Utah/94/2024_H3N2\x94KVj4\x02\x00\x00KWj\x15\x02\x00\x00KX\x8c\x1dA/Cambodia/e0826360/2020_H3N2\x94KY\x8c\x1cA/Manitoba/RV04865/2024_H3N2\x94KZjD\x02\x00\x00K[\x8c\x13A/Utah/87/2024_H3N2\x94K\\\x8c\x18A/Wisconsin/30/2025_H1N1\x94K]\x8c\x1cA/HongKong/4801/2014egg_H3N2\x94K^j%\x02\x00\x00K_j\x13\x02\x00\x00K`\x8c\x1fA/France/BRE-IPP01880/2025_H3N2\x94Kaj?\x02\x00\x00Kb\x8c\x14A/Darwin/6/2021_H3N2\x94Kcj\\\x02\x00\x00Kd\x8c\x1bA/Santiago/101713/2024_H1N1\x94KejE\x02\x00\x00Kfj"\x02\x00\x00Kgj+\x02\x00\x00Khj8\x02\x00\x00Ki\x8c\x1bA/Hawaii/ISC-1140/2025_H1N1\x94Kjj_\x02\x00\x00KkjH\x02\x00\x00Klj\x10\x02\x00\x00Km\x8c\x18A/Tennessee/99/2024_H3N2\x94Knj>\x02\x00\x00Koj\'\x02\x00\x00KpjK\x02\x00\x00Kq\x8c\x17A/Qatar/83328/2024_H1N1\x94Kr\x8c\x1cA/Massachusetts/18/2022_H3N2\x94Ks\x8c\x18A/Michigan/120/2024_H3N2\x94Kt\x8c\x19A/Minnesota/131/2024_H1N1\x94Kuj\x1a\x02\x00\x00Kv\x8c\x1fA/Washington/UW-25728/2024_H3N2\x94Kw\x8c\x19A/Colombia/7681/2024_H3N2\x94Kx\x8c\x15A/Busan/461/2025_H3N2\x94Ky\x8c\x1dA/CoteD\'Ivoire/4448/2024_H3N2\x94Kz\x8c\x19A/Maldives/2186/2024_H3N2\x94K{\x8c\x19A/Maldives/2147/2024_H3N2\x94K|\x8c\x1bA/KANAGAWA/AC2408/2025_H1N1\x94K}\x8c\x1cA/Washington/15245/2025_H3N2\x94K~j\x1d\x02\x00\x00K\x7f\x8c\x19A/California/07/2009_H1N1\x94K\x80\x8c\x19A/HongKong/2671/2019_H3N2\x94K\x81\x8c\x16A/Vermont/05/2025_H1N1\x94K\x82\x8c\x17A/New_York/39/2025_H3N2\x94K\x83\x8c\x17A/Ufa/CRIE/47/2024_H1N1\x94K\x84jc\x02\x00\x00K\x85j]\x02\x00\x00K\x86\x8c\x1fA/Queensland/IN000803/2024_H3N2\x94K\x87\x8c\x18A/Colorado/218/2024_H1N1\x94K\x88jN\x02\x00\x00K\x89jC\x02\x00\x00K\x8ajS\x02\x00\x00K\x8bj-\x02\x00\x00K\x8cjo\x02\x00\x00K\x8d\x8c\x17A/HongKong/45/2019_H3N2\x94K\x8ejW\x02\x00\x00K\x8f\x8c$A/Singapore/INFIMH-16-0019/2016_H3N2\x94K\x90j>\x02\x00\x00K\x91\x8c\x15A/Oregon/11/2025_H1N1\x94K\x92\x8c\x18A/Tasmania/790/2024_H3N2\x94K\x93j\x13\x02\x00\x00K\x94\x8c\x1aA/Texas/ISC-1322/2025_H3N2\x94K\x95jT\x02\x00\x00K\x96\x8c\x19A/Wisconsin/172/2024_H3N2\x94K\x97\x8c\x1cA/Massachusetts/93/2024_H3N2\x94K\x98j\x1b\x02\x00\x00K\x99\x8c\x17A/Texas/15550/2024_H3N2\x94K\x9aj^\x02\x00\x00K\x9b\x8c\x18A/Tasmania/788/2024_H3N2\x94K\x9c\x8c\x16A/Oregon/261/2024_H1N1\x94K\x9d\x8c,A/France/ARA-RELAB-HCL025017178801/2025_H3N2\x94K\x9ejm\x02\x00\x00K\x9f\x8c\x16A/Vermont/10/2025_H1N1\x94K\xa0\x8c#A/Michigan/UM-10062069629/2025_H3N2\x94K\xa1j\x11\x02\x00\x00K\xa2jd\x02\x00\x00K\xa3\x8c\x19A/Minnesota/133/2024_H3N2\x94K\xa4\x8c\x17A/Maryland/64/2024_H1N1\x94K\xa5j;\x02\x00\x00K\xa6\x8c\x1dA/Singapore/MOH0547/2024_H1N1\x94K\xa7\x8c%A/NovaScotia/ET1801CP00018S/2025_H1N1\x94K\xa8j\x12\x02\x00\x00K\xa9jx\x02\x00\x00K\xaajR\x02\x00\x00K\xabj6\x02\x00\x00K\xacjr\x02\x00\x00K\xad\x8c\x19A/Maldives/2132/2024_H1N1\x94K\xaejL\x02\x00\x00K\xafjk\x02\x00\x00K\xb0jz\x02\x00\x00K\xb1\x8c\x1fA/Croatia/10136RV/2023-egg_H3N2\x94K\xb2j\x1f\x02\x00\x00K\xb3j/\x02\x00\x00K\xb4jw\x02\x00\x00K\xb5\x8c"A/Massachusetts/ISC-1684/2025_H3N2\x94K\xb6j}\x02\x00\x00K\xb7\x8c\x1cA/Madagascar/00003/2025_H1N1\x94K\xb8\x8c\x19A/Tambov/160-1V/2024_H1N1\x94K\xb9\x8c\x1dA/Netherlands/01502/2025_H3N2\x94K\xbajQ\x02\x00\x00K\xbbjg\x02\x00\x00K\xbcjq\x02\x00\x00K\xbd\x8c\x18A/New_York/191/2024_H3N2\x94K\xbe\x8c"A/Vladimir/RII-MH223382S/2024_H1N1\x94K\xbfj\x7f\x02\x00\x00K\xc0j\x17\x02\x00\x00K\xc1j,\x02\x00\x00K\xc2jI\x02\x00\x00K\xc3\x8c&A/Qinghai-Chengzhong/SWL1410/2024_H1N1\x94K\xc4j\x16\x02\x00\x00K\xc5\x8c"A/Mato_Grosso_do_Sul/518/2025_H3N2\x94K\xc6\x8c\x18A/Norway/12374/2023_H3N2\x94K\xc7j\x84\x02\x00\x00K\xc8\x8c\x1cA/Badajoz/18680568/2025_H3N2\x94K\xc9j`\x02\x00\x00K\xcaj\\\x02\x00\x00K\xcbj\x82\x02\x00\x00K\xccj7\x02\x00\x00K\xcdj\x10\x02\x00\x00K\xcej\x86\x02\x00\x00K\xcfjP\x02\x00\x00K\xd0j!\x02\x00\x00K\xd1jy\x02\x00\x00K\xd2j1\x02\x00\x00K\xd3j\x90\x02\x00\x00K\xd4j\x87\x02\x00\x00K\xd5\x8c\x18A/Canberra/613/2024_H3N2\x94K\xd6jp\x02\x00\x00K\xd7j.\x02\x00\x00K\xd8j$\x02\x00\x00K\xd9j^\x02\x00\x00K\xda\x8c\x17A/Kentucky/57/2024_H3N2\x94K\xdbju\x02\x00\x00K\xdc\x8c\x15A/Ulsan/492/2025_H1N1\x94K\xddjV\x02\x00\x00K\xdeje\x02\x00\x00K\xdfj\x0f\x02\x00\x00K\xe0jv\x02\x00\x00K\xe1\x8c\x1dA/Netherlands/10563/2023_H3N2\x94K\xe2j#\x02\x00\x00K\xe3jv\x02\x00\x00K\xe4\x8c\x1eA/Santa_Catarina/333/2025_H3N2\x94K\xe5j\x92\x02\x00\x00K\xe6j\x89\x02\x00\x00K\xe7jL\x02\x00\x00K\xe8ju\x02\x00\x00K\xe9js\x02\x00\x00K\xea\x8c\x17A/Illinois/65/2024_H1N1\x94K\xebjB\x02\x00\x00K\xecj\x19\x02\x00\x00K\xedj{\x02\x00\x00K\xeej\x81\x02\x00\x00K\xefjc\x02\x00\x00K\xf0j0\x02\x00\x00K\xf1j5\x02\x00\x00K\xf2j~\x02\x00\x00K\xf3j\x94\x02\x00\x00K\xf4jF\x02\x00\x00K\xf5j\x97\x02\x00\x00K\xf6j\x93\x02\x00\x00K\xf7j\x96\x02\x00\x00K\xf8jl\x02\x00\x00K\xf9j3\x02\x00\x00K\xfaj=\x02\x00\x00K\xfbj%\x02\x00\x00K\xfcj\x80\x02\x00\x00K\xfdjj\x02\x00\x00K\xfejG\x02\x00\x00K\xffj\x8a\x02\x00\x00M\x00\x01jY\x02\x00\x00M\x01\x01j\x18\x02\x00\x00M\x02\x01j\x88\x02\x00\x00M\x03\x01j\x95\x02\x00\x00M\x04\x01j\x85\x02\x00\x00M\x05\x01\x8c\x1bA/TOKYO/EIS11-277/2024_H1N1\x94M\x06\x01jb\x02\x00\x00M\x07\x01jJ\x02\x00\x00M\x08\x01\x8c!A/DE/DE-DHSS-901/2025_(H3N2)_H3N2\x94M\t\x01jf\x02\x00\x00M\n\x01j\x98\x02\x00\x00M\x0b\x01ja\x02\x00\x00M\x0c\x01jU\x02\x00\x00M\r\x01j\x14\x02\x00\x00M\x0e\x01jA\x02\x00\x00M\x0f\x01j9\x02\x00\x00M\x10\x01jo\x02\x00\x00M\x11\x01j\x8b\x02\x00\x00M\x12\x01j+\x02\x00\x00M\x13\x01jX\x02\x00\x00M\x14\x01jX\x02\x00\x00M\x15\x01j\x1e\x02\x00\x00M\x16\x01jV\x02\x00\x00M\x17\x01\x8c\x1cA/Florida/ISC-1241/2025_H3N2\x94M\x18\x01jO\x02\x00\x00M\x19\x01j\x8f\x02\x00\x00M\x1a\x01j\x8d\x02\x00\x00M\x1b\x01j\x91\x02\x00\x00M\x1c\x01j \x02\x00\x00M\x1d\x01j\x99\x02\x00\x00uu}\x94\x8c\x07barcode\x94}\x94(K\x00\x8c\x10AAAAAATTTATGACAA\x94K\x01\x8c\x10AACCACCGAGTGACCG\x94K\x02\x8c\x10AACGACAAACAGTAAG\x94K\x03\x8c\x10CAATTAGAAATACATA\x94K\x04\x8c\x10CATACAGAGTTTGTTG\x94K\x05\x8c\x10CTTTAAATTATAGTCT\x94K\x06\x8c\x10GTACAAACCTGCAAAT\x94K\x07\x8c\x10TACCCTGCAAGCCACT\x94K\x08\x8c\x10TTATCTGTAGAGCGCT\x94us]\x94(\x8c\x18plate12_EPIHK_EPIHK_1_40\x94\x8c\x18plate12_EPIHK_EPIHK_1_92\x94\x8c\x19plate12_EPIHK_EPIHK_1_212\x94\x8c\x19plate12_EPIHK_EPIHK_1_487\x94\x8c\x1aplate12_EPIHK_EPIHK_1_1119\x94\x8c\x1aplate12_EPIHK_EPIHK_1_2575\x94\x8c\x1aplate12_EPIHK_EPIHK_1_5921\x94\x8c\x1bplate12_EPIHK_EPIHK_1_13619\x94\x8c\x18plate12_EPIHK_EPIHK_2_40\x94\x8c\x18plate12_EPIHK_EPIHK_2_92\x94\x8c\x19plate12_EPIHK_EPIHK_2_212\x94\x8c\x19plate12_EPIHK_EPIHK_2_487\x94\x8c\x1aplate12_EPIHK_EPIHK_2_1119\x94\x8c\x1aplate12_EPIHK_EPIHK_2_2575\x94\x8c\x1aplate12_EPIHK_EPIHK_2_5921\x94\x8c\x1bplate12_EPIHK_EPIHK_2_13619\x94\x8c\x18plate12_EPIHK_EPIHK_3_40\x94\x8c\x18plate12_EPIHK_EPIHK_3_92\x94\x8c\x19plate12_EPIHK_EPIHK_3_212\x94\x8c\x19plate12_EPIHK_EPIHK_3_487\x94\x8c\x1aplate12_EPIHK_EPIHK_3_1119\x94\x8c\x1aplate12_EPIHK_EPIHK_3_2575\x94\x8c\x1aplate12_EPIHK_EPIHK_3_5921\x94\x8c\x1bplate12_EPIHK_EPIHK_3_13619\x94\x8c\x18plate12_EPIHK_EPIHK_4_40\x94\x8c\x18plate12_EPIHK_EPIHK_4_92\x94\x8c\x19plate12_EPIHK_EPIHK_4_212\x94\x8c\x19plate12_EPIHK_EPIHK_4_487\x94\x8c\x1aplate12_EPIHK_EPIHK_4_1119\x94\x8c\x1aplate12_EPIHK_EPIHK_4_2575\x94\x8c\x1aplate12_EPIHK_EPIHK_4_5921\x94\x8c\x1bplate12_EPIHK_EPIHK_4_13619\x94\x8c\x18plate12_EPIHK_EPIHK_5_40\x94\x8c\x18plate12_EPIHK_EPIHK_5_92\x94\x8c\x19plate12_EPIHK_EPIHK_5_212\x94\x8c\x19plate12_EPIHK_EPIHK_5_487\x94\x8c\x1aplate12_EPIHK_EPIHK_5_1119\x94\x8c\x1aplate12_EPIHK_EPIHK_5_2575\x94\x8c\x1aplate12_EPIHK_EPIHK_5_5921\x94\x8c\x1bplate12_EPIHK_EPIHK_5_13619\x94\x8c\x18plate12_EPIHK_EPIHK_6_40\x94\x8c\x18plate12_EPIHK_EPIHK_6_92\x94\x8c\x19plate12_EPIHK_EPIHK_6_212\x94\x8c\x19plate12_EPIHK_EPIHK_6_487\x94\x8c\x1aplate12_EPIHK_EPIHK_6_1119\x94\x8c\x1aplate12_EPIHK_EPIHK_6_2575\x94\x8c\x1aplate12_EPIHK_EPIHK_6_5921\x94\x8c\x1bplate12_EPIHK_EPIHK_6_13619\x94\x8c\x18plate12_EPIHK_EPIHK_7_40\x94\x8c\x18plate12_EPIHK_EPIHK_7_92\x94\x8c\x19plate12_EPIHK_EPIHK_7_212\x94\x8c\x19plate12_EPIHK_EPIHK_7_487\x94\x8c\x1aplate12_EPIHK_EPIHK_7_1119\x94\x8c\x1aplate12_EPIHK_EPIHK_7_2575\x94\x8c\x1aplate12_EPIHK_EPIHK_7_5921\x94\x8c\x1bplate12_EPIHK_EPIHK_7_13619\x94\x8c\x18plate12_EPIHK_EPIHK_8_40\x94\x8c\x18plate12_EPIHK_EPIHK_8_92\x94\x8c\x19plate12_EPIHK_EPIHK_8_212\x94\x8c\x19plate12_EPIHK_EPIHK_8_487\x94\x8c\x1aplate12_EPIHK_EPIHK_8_1119\x94\x8c\x1aplate12_EPIHK_EPIHK_8_2575\x94\x8c\x1aplate12_EPIHK_EPIHK_8_5921\x94\x8c\x1bplate12_EPIHK_EPIHK_8_13619\x94\x8c\x18plate12_EPIHK_EPIHK_9_40\x94\x8c\x18plate12_EPIHK_EPIHK_9_92\x94\x8c\x19plate12_EPIHK_EPIHK_9_212\x94\x8c\x19plate12_EPIHK_EPIHK_9_487\x94\x8c\x1aplate12_EPIHK_EPIHK_9_1119\x94\x8c\x1aplate12_EPIHK_EPIHK_9_2575\x94\x8c\x1aplate12_EPIHK_EPIHK_9_5921\x94\x8c\x1bplate12_EPIHK_EPIHK_9_13619\x94\x8c\x14plate12_EPIHK_none-1\x94\x8c\x14plate12_EPIHK_none-2\x94\x8c\x14plate12_EPIHK_none-3\x94\x8c\x14plate12_EPIHK_none-4\x94\x8c\x14plate12_EPIHK_none-5\x94\x8c\x14plate12_EPIHK_none-6\x94\x8c\x14plate12_EPIHK_none-7\x94\x8c\x14plate12_EPIHK_none-8\x94e}\x94(\x8c\x05group\x94\x8c\x05EPIHK\x94\x8c\x04date\x94\x8c\n2025-08-13\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c(data/plates/2025-08-13_plate12_EPIHK.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(\x8c\x1bavg_barcode_counts_per_well\x94M\xf4\x01\x8c\x1fmin_neut_standard_frac_per_well\x94G?tz\xe1G\xae\x14{\x8c"no_serum_per_viral_barcode_filters\x94}\x94(\x8c\x08min_frac\x94G?\x1a6\xe2\xeb\x1cC-\x8c\x0fmax_fold_change\x94K\x04\x8c\tmax_wells\x94K\x02u\x8c!per_neut_standard_barcode_filters\x94}\x94(\x8c\x08min_frac\x94G?tz\xe1G\xae\x14{\x8c\x0fmax_fold_change\x94K\x04\x8c\tmax_wells\x94K\x02u\x8c min_neut_standard_count_per_well\x94M\xe8\x03\x8c)min_no_serum_count_per_viral_barcode_well\x94Kd\x8c+max_frac_infectivity_per_viral_barcode_well\x94K\x03\x8c)min_dilutions_per_barcode_serum_replicate\x94K\x06u\x8c\x0fcurvefit_params\x94}\x94(\x8c\x18frac_infectivity_ceiling\x94K\x01\x8c\x06fixtop\x94]\x94(G?\xe3333333K\x01e\x8c\tfixbottom\x94K\x00\x8c\x08fixslope\x94]\x94(G?\xe9\x99\x99\x99\x99\x99\x9aK\neu\x8c\x0bcurvefit_qc\x94}\x94(\x8c\x1dmax_frac_infectivity_at_least\x94G\x00\x00\x00\x00\x00\x00\x00\x00\x8c\x0fgoodness_of_fit\x94}\x94(\x8c\x06min_R2\x94G?\xe0\x00\x00\x00\x00\x00\x00\x8c\x08max_RMSD\x94G?\xc3333333u\x8c#serum_replicates_ignore_curvefit_qc\x94]\x94\x8c+barcode_serum_replicates_ignore_curvefit_qc\x94]\x94u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\x08upstream\x94\x8c\x1cCCTACAATGTCGGATTTGTATTTAATAG\x94\x8c\ndownstream\x94\x8c\x00\x94\x8c\x04minq\x94K\x14\x8c\x11upstream_mismatch\x94K\x04\x8c\x0ebc_orientation\x94\x8c\x02R2\x94\x8c\tupstream2\x94\x8c\x06CGAGCT\x94\x8c\x12upstream2_mismatch\x94K\x01u\x8c\x07samples\x94}\x94(\x8c\x04well\x94}\x94(K\x00\x8c\x02A3\x94K\x01\x8c\x02B3\x94K\x02\x8c\x02C3\x94K\x03\x8c\x02D3\x94K\x04\x8c\x02E3\x94K\x05\x8c\x02F3\x94K\x06\x8c\x02G3\x94K\x07\x8c\x02H3\x94K\x08\x8c\x02A4\x94K\t\x8c\x02B4\x94K\n\x8c\x02C4\x94K\x0b\x8c\x02D4\x94K\x0c\x8c\x02E4\x94K\r\x8c\x02F4\x94K\x0e\x8c\x02G4\x94K\x0f\x8c\x02H4\x94K\x10\x8c\x02A5\x94K\x11\x8c\x02B5\x94K\x12\x8c\x02C5\x94K\x13\x8c\x02D5\x94K\x14\x8c\x02E5\x94K\x15\x8c\x02F5\x94K\x16\x8c\x02G5\x94K\x17\x8c\x02H5\x94K\x18\x8c\x02A6\x94K\x19\x8c\x02B6\x94K\x1a\x8c\x02C6\x94K\x1b\x8c\x02D6\x94K\x1c\x8c\x02E6\x94K\x1d\x8c\x02F6\x94K\x1e\x8c\x02G6\x94K\x1f\x8c\x02H6\x94K \x8c\x02A7\x94K!\x8c\x02B7\x94K"\x8c\x02C7\x94K#\x8c\x02D7\x94K$\x8c\x02E7\x94K%\x8c\x02F7\x94K&\x8c\x02G7\x94K\'\x8c\x02H7\x94K(\x8c\x02A8\x94K)\x8c\x02B8\x94K*\x8c\x02C8\x94K+\x8c\x02D8\x94K,\x8c\x02E8\x94K-\x8c\x02F8\x94K.\x8c\x02G8\x94K/\x8c\x02H8\x94K0\x8c\x02A9\x94K1\x8c\x02B9\x94K2\x8c\x02C9\x94K3\x8c\x02D9\x94K4\x8c\x02E9\x94K5\x8c\x02F9\x94K6\x8c\x02G9\x94K7\x8c\x02H9\x94K8\x8c\x03A10\x94K9\x8c\x03B10\x94K:\x8c\x03C10\x94K;\x8c\x03D10\x94K<\x8c\x03E10\x94K=\x8c\x03F10\x94K>\x8c\x03G10\x94K?\x8c\x03H10\x94K@\x8c\x03A11\x94KA\x8c\x03B11\x94KB\x8c\x03C11\x94KC\x8c\x03D11\x94KD\x8c\x03E11\x94KE\x8c\x03F11\x94KF\x8c\x03G11\x94KG\x8c\x03H11\x94KH\x8c\x03A12\x94KI\x8c\x03B12\x94KJ\x8c\x03C12\x94KK\x8c\x03D12\x94KL\x8c\x03E12\x94KM\x8c\x03F12\x94KN\x8c\x03G12\x94KO\x8c\x03H12\x94u\x8c\x05serum\x94}\x94(K\x00\x8c\x07EPIHK_1\x94K\x01j\x8d\x03\x00\x00K\x02j\x8d\x03\x00\x00K\x03j\x8d\x03\x00\x00K\x04j\x8d\x03\x00\x00K\x05j\x8d\x03\x00\x00K\x06j\x8d\x03\x00\x00K\x07j\x8d\x03\x00\x00K\x08\x8c\x07EPIHK_2\x94K\tj\x8e\x03\x00\x00K\nj\x8e\x03\x00\x00K\x0bj\x8e\x03\x00\x00K\x0cj\x8e\x03\x00\x00K\rj\x8e\x03\x00\x00K\x0ej\x8e\x03\x00\x00K\x0fj\x8e\x03\x00\x00K\x10\x8c\x07EPIHK_3\x94K\x11j\x8f\x03\x00\x00K\x12j\x8f\x03\x00\x00K\x13j\x8f\x03\x00\x00K\x14j\x8f\x03\x00\x00K\x15j\x8f\x03\x00\x00K\x16j\x8f\x03\x00\x00K\x17j\x8f\x03\x00\x00K\x18\x8c\x07EPIHK_4\x94K\x19j\x90\x03\x00\x00K\x1aj\x90\x03\x00\x00K\x1bj\x90\x03\x00\x00K\x1cj\x90\x03\x00\x00K\x1dj\x90\x03\x00\x00K\x1ej\x90\x03\x00\x00K\x1fj\x90\x03\x00\x00K \x8c\x07EPIHK_5\x94K!j\x91\x03\x00\x00K"j\x91\x03\x00\x00K#j\x91\x03\x00\x00K$j\x91\x03\x00\x00K%j\x91\x03\x00\x00K&j\x91\x03\x00\x00K\'j\x91\x03\x00\x00K(\x8c\x07EPIHK_6\x94K)j\x92\x03\x00\x00K*j\x92\x03\x00\x00K+j\x92\x03\x00\x00K,j\x92\x03\x00\x00K-j\x92\x03\x00\x00K.j\x92\x03\x00\x00K/j\x92\x03\x00\x00K0\x8c\x07EPIHK_7\x94K1j\x93\x03\x00\x00K2j\x93\x03\x00\x00K3j\x93\x03\x00\x00K4j\x93\x03\x00\x00K5j\x93\x03\x00\x00K6j\x93\x03\x00\x00K7j\x93\x03\x00\x00K8\x8c\x07EPIHK_8\x94K9j\x94\x03\x00\x00K:j\x94\x03\x00\x00K;j\x94\x03\x00\x00K<j\x94\x03\x00\x00K=j\x94\x03\x00\x00K>j\x94\x03\x00\x00K?j\x94\x03\x00\x00K@\x8c\x07EPIHK_9\x94KAj\x95\x03\x00\x00KBj\x95\x03\x00\x00KCj\x95\x03\x00\x00KDj\x95\x03\x00\x00KEj\x95\x03\x00\x00KFj\x95\x03\x00\x00KGj\x95\x03\x00\x00KH\x8c\x04none\x94KIj\x96\x03\x00\x00KJj\x96\x03\x00\x00KKj\x96\x03\x00\x00KLj\x96\x03\x00\x00KMj\x96\x03\x00\x00KNj\x96\x03\x00\x00KOj\x96\x03\x00\x00u\x8c\x0fdilution_factor\x94}\x94(K\x00K(K\x01K\\K\x02K\xd4K\x03M\xe7\x01K\x04M_\x04K\x05M\x0f\nK\x06M!\x17K\x07M35K\x08K(K\tK\\K\nK\xd4K\x0bM\xe7\x01K\x0cM_\x04K\rM\x0f\nK\x0eM!\x17K\x0fM35K\x10K(K\x11K\\K\x12K\xd4K\x13M\xe7\x01K\x14M_\x04K\x15M\x0f\nK\x16M!\x17K\x17M35K\x18K(K\x19K\\K\x1aK\xd4K\x1bM\xe7\x01K\x1cM_\x04K\x1dM\x0f\nK\x1eM!\x17K\x1fM35K K(K!K\\K"K\xd4K#M\xe7\x01K$M_\x04K%M\x0f\nK&M!\x17K\'M35K(K(K)K\\K*K\xd4K+M\xe7\x01K,M_\x04K-M\x0f\nK.M!\x17K/M35K0K(K1K\\K2K\xd4K3M\xe7\x01K4M_\x04K5M\x0f\nK6M!\x17K7M35K8K(K9K\\K:K\xd4K;M\xe7\x01K<M_\x04K=M\x0f\nK>M!\x17K?M35K@K(KAK\\KBK\xd4KCM\xe7\x01KDM_\x04KEM\x0f\nKFM!\x17KGM35KHNKINKJNKKNKLNKMNKNNKONu\x8c\treplicate\x94}\x94(K\x00K\x01K\x01K\x01K\x02K\x01K\x03K\x01K\x04K\x01K\x05K\x01K\x06K\x01K\x07K\x01K\x08K\x01K\tK\x01K\nK\x01K\x0bK\x01K\x0cK\x01K\rK\x01K\x0eK\x01K\x0fK\x01K\x10K\x01K\x11K\x01K\x12K\x01K\x13K\x01K\x14K\x01K\x15K\x01K\x16K\x01K\x17K\x01K\x18K\x01K\x19K\x01K\x1aK\x01K\x1bK\x01K\x1cK\x01K\x1dK\x01K\x1eK\x01K\x1fK\x01K K\x01K!K\x01K"K\x01K#K\x01K$K\x01K%K\x01K&K\x01K\'K\x01K(K\x01K)K\x01K*K\x01K+K\x01K,K\x01K-K\x01K.K\x01K/K\x01K0K\x01K1K\x01K2K\x01K3K\x01K4K\x01K5K\x01K6K\x01K7K\x01K8K\x01K9K\x01K:K\x01K;K\x01K<K\x01K=K\x01K>K\x01K?K\x01K@K\x01KAK\x01KBK\x01KCK\x01KDK\x01KEK\x01KFK\x01KGK\x01KHK\x01KIK\x02KJK\x03KKK\x04KLK\x05KMK\x06KNK\x07KOK\x08u\x8c\x05fastq\x94}\x94(K\x00\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_17_S17_R1_001.fastq.gz\x94K\x01\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_18_S18_R1_001.fastq.gz\x94K\x02\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_19_S19_R1_001.fastq.gz\x94K\x03\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_20_S20_R1_001.fastq.gz\x94K\x04\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_21_S21_R1_001.fastq.gz\x94K\x05\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_22_S22_R1_001.fastq.gz\x94K\x06\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_23_S23_R1_001.fastq.gz\x94K\x07\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_24_S24_R1_001.fastq.gz\x94K\x08\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_25_S25_R1_001.fastq.gz\x94K\t\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_26_S26_R1_001.fastq.gz\x94K\n\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_27_S27_R1_001.fastq.gz\x94K\x0b\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_28_S28_R1_001.fastq.gz\x94K\x0c\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_29_S29_R1_001.fastq.gz\x94K\r\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_30_S30_R1_001.fastq.gz\x94K\x0e\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_31_S31_R1_001.fastq.gz\x94K\x0f\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_32_S32_R1_001.fastq.gz\x94K\x10\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_33_S33_R1_001.fastq.gz\x94K\x11\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_34_S34_R1_001.fastq.gz\x94K\x12\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_35_S35_R1_001.fastq.gz\x94K\x13\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_36_S36_R1_001.fastq.gz\x94K\x14\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_37_S37_R1_001.fastq.gz\x94K\x15\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_38_S38_R1_001.fastq.gz\x94K\x16\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_39_S39_R1_001.fastq.gz\x94K\x17\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_40_S40_R1_001.fastq.gz\x94K\x18\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_41_S41_R1_001.fastq.gz\x94K\x19\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_42_S42_R1_001.fastq.gz\x94K\x1a\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_43_S43_R1_001.fastq.gz\x94K\x1b\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_44_S44_R1_001.fastq.gz\x94K\x1c\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_45_S45_R1_001.fastq.gz\x94K\x1d\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_46_S46_R1_001.fastq.gz\x94K\x1e\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_47_S47_R1_001.fastq.gz\x94K\x1f\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_48_S48_R1_001.fastq.gz\x94K \x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_49_S49_R1_001.fastq.gz\x94K!\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_50_S50_R1_001.fastq.gz\x94K"\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_51_S51_R1_001.fastq.gz\x94K#\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_52_S52_R1_001.fastq.gz\x94K$\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_53_S53_R1_001.fastq.gz\x94K%\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_54_S54_R1_001.fastq.gz\x94K&\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_55_S55_R1_001.fastq.gz\x94K\'\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_56_S56_R1_001.fastq.gz\x94K(\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_57_S57_R1_001.fastq.gz\x94K)\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_58_S58_R1_001.fastq.gz\x94K*\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_59_S59_R1_001.fastq.gz\x94K+\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_60_S60_R1_001.fastq.gz\x94K,\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_61_S61_R1_001.fastq.gz\x94K-\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_62_S62_R1_001.fastq.gz\x94K.\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_63_S63_R1_001.fastq.gz\x94K/\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_64_S64_R1_001.fastq.gz\x94K0\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_65_S65_R1_001.fastq.gz\x94K1\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_66_S66_R1_001.fastq.gz\x94K2\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_67_S67_R1_001.fastq.gz\x94K3\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_68_S68_R1_001.fastq.gz\x94K4\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_69_S69_R1_001.fastq.gz\x94K5\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_70_S70_R1_001.fastq.gz\x94K6\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_71_S71_R1_001.fastq.gz\x94K7\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_72_S72_R1_001.fastq.gz\x94K8\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_73_S73_R1_001.fastq.gz\x94K9\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_74_S74_R1_001.fastq.gz\x94K:\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_75_S75_R1_001.fastq.gz\x94K;\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_76_S76_R1_001.fastq.gz\x94K<\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_77_S77_R1_001.fastq.gz\x94K=\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_78_S78_R1_001.fastq.gz\x94K>\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_79_S79_R1_001.fastq.gz\x94K?\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_80_S80_R1_001.fastq.gz\x94K@\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_81_S81_R1_001.fastq.gz\x94KA\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_82_S82_R1_001.fastq.gz\x94KB\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_83_S83_R1_001.fastq.gz\x94KC\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_84_S84_R1_001.fastq.gz\x94KD\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_85_S85_R1_001.fastq.gz\x94KE\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_86_S86_R1_001.fastq.gz\x94KF\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_87_S87_R1_001.fastq.gz\x94KG\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_88_S88_R1_001.fastq.gz\x94KH\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_89_S89_R1_001.fastq.gz\x94KI\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_90_S90_R1_001.fastq.gz\x94KJ\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_91_S91_R1_001.fastq.gz\x94KK\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_92_S92_R1_001.fastq.gz\x94KL\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_93_S93_R1_001.fastq.gz\x94KM\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_94_S94_R1_001.fastq.gz\x94KN\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_95_S95_R1_001.fastq.gz\x94KO\x8cu/shared/ngs/illumina/bloom_lab/250819_VH00319_577_AACVTTYHV/Unaligned/Project_bloom_lab/PlateA_96_S96_R1_001.fastq.gz\x94u\x8c\x0fserum_replicate\x94}\x94(K\x00j\x8d\x03\x00\x00K\x01j\x8d\x03\x00\x00K\x02j\x8d\x03\x00\x00K\x03j\x8d\x03\x00\x00K\x04j\x8d\x03\x00\x00K\x05j\x8d\x03\x00\x00K\x06j\x8d\x03\x00\x00K\x07j\x8d\x03\x00\x00K\x08j\x8e\x03\x00\x00K\tj\x8e\x03\x00\x00K\nj\x8e\x03\x00\x00K\x0bj\x8e\x03\x00\x00K\x0cj\x8e\x03\x00\x00K\rj\x8e\x03\x00\x00K\x0ej\x8e\x03\x00\x00K\x0fj\x8e\x03\x00\x00K\x10j\x8f\x03\x00\x00K\x11j\x8f\x03\x00\x00K\x12j\x8f\x03\x00\x00K\x13j\x8f\x03\x00\x00K\x14j\x8f\x03\x00\x00K\x15j\x8f\x03\x00\x00K\x16j\x8f\x03\x00\x00K\x17j\x8f\x03\x00\x00K\x18j\x90\x03\x00\x00K\x19j\x90\x03\x00\x00K\x1aj\x90\x03\x00\x00K\x1bj\x90\x03\x00\x00K\x1cj\x90\x03\x00\x00K\x1dj\x90\x03\x00\x00K\x1ej\x90\x03\x00\x00K\x1fj\x90\x03\x00\x00K j\x91\x03\x00\x00K!j\x91\x03\x00\x00K"j\x91\x03\x00\x00K#j\x91\x03\x00\x00K$j\x91\x03\x00\x00K%j\x91\x03\x00\x00K&j\x91\x03\x00\x00K\'j\x91\x03\x00\x00K(j\x92\x03\x00\x00K)j\x92\x03\x00\x00K*j\x92\x03\x00\x00K+j\x92\x03\x00\x00K,j\x92\x03\x00\x00K-j\x92\x03\x00\x00K.j\x92\x03\x00\x00K/j\x92\x03\x00\x00K0j\x93\x03\x00\x00K1j\x93\x03\x00\x00K2j\x93\x03\x00\x00K3j\x93\x03\x00\x00K4j\x93\x03\x00\x00K5j\x93\x03\x00\x00K6j\x93\x03\x00\x00K7j\x93\x03\x00\x00K8j\x94\x03\x00\x00K9j\x94\x03\x00\x00K:j\x94\x03\x00\x00K;j\x94\x03\x00\x00K<j\x94\x03\x00\x00K=j\x94\x03\x00\x00K>j\x94\x03\x00\x00K?j\x94\x03\x00\x00K@j\x95\x03\x00\x00KAj\x95\x03\x00\x00KBj\x95\x03\x00\x00KCj\x95\x03\x00\x00KDj\x95\x03\x00\x00KEj\x95\x03\x00\x00KFj\x95\x03\x00\x00KGj\x95\x03\x00\x00KH\x8c\x06none-1\x94KI\x8c\x06none-2\x94KJ\x8c\x06none-3\x94KK\x8c\x06none-4\x94KL\x8c\x06none-5\x94KM\x8c\x06none-6\x94KN\x8c\x06none-7\x94KO\x8c\x06none-8\x94u\x8c\x0esample_noplate\x94}\x94(K\x00\x8c\nEPIHK_1_40\x94K\x01\x8c\nEPIHK_1_92\x94K\x02\x8c\x0bEPIHK_1_212\x94K\x03\x8c\x0bEPIHK_1_487\x94K\x04\x8c\x0cEPIHK_1_1119\x94K\x05\x8c\x0cEPIHK_1_2575\x94K\x06\x8c\x0cEPIHK_1_5921\x94K\x07\x8c\rEPIHK_1_13619\x94K\x08\x8c\nEPIHK_2_40\x94K\t\x8c\nEPIHK_2_92\x94K\n\x8c\x0bEPIHK_2_212\x94K\x0b\x8c\x0bEPIHK_2_487\x94K\x0c\x8c\x0cEPIHK_2_1119\x94K\r\x8c\x0cEPIHK_2_2575\x94K\x0e\x8c\x0cEPIHK_2_5921\x94K\x0f\x8c\rEPIHK_2_13619\x94K\x10\x8c\nEPIHK_3_40\x94K\x11\x8c\nEPIHK_3_92\x94K\x12\x8c\x0bEPIHK_3_212\x94K\x13\x8c\x0bEPIHK_3_487\x94K\x14\x8c\x0cEPIHK_3_1119\x94K\x15\x8c\x0cEPIHK_3_2575\x94K\x16\x8c\x0cEPIHK_3_5921\x94K\x17\x8c\rEPIHK_3_13619\x94K\x18\x8c\nEPIHK_4_40\x94K\x19\x8c\nEPIHK_4_92\x94K\x1a\x8c\x0bEPIHK_4_212\x94K\x1b\x8c\x0bEPIHK_4_487\x94K\x1c\x8c\x0cEPIHK_4_1119\x94K\x1d\x8c\x0cEPIHK_4_2575\x94K\x1e\x8c\x0cEPIHK_4_5921\x94K\x1f\x8c\rEPIHK_4_13619\x94K \x8c\nEPIHK_5_40\x94K!\x8c\nEPIHK_5_92\x94K"\x8c\x0bEPIHK_5_212\x94K#\x8c\x0bEPIHK_5_487\x94K$\x8c\x0cEPIHK_5_1119\x94K%\x8c\x0cEPIHK_5_2575\x94K&\x8c\x0cEPIHK_5_5921\x94K\'\x8c\rEPIHK_5_13619\x94K(\x8c\nEPIHK_6_40\x94K)\x8c\nEPIHK_6_92\x94K*\x8c\x0bEPIHK_6_212\x94K+\x8c\x0bEPIHK_6_487\x94K,\x8c\x0cEPIHK_6_1119\x94K-\x8c\x0cEPIHK_6_2575\x94K.\x8c\x0cEPIHK_6_5921\x94K/\x8c\rEPIHK_6_13619\x94K0\x8c\nEPIHK_7_40\x94K1\x8c\nEPIHK_7_92\x94K2\x8c\x0bEPIHK_7_212\x94K3\x8c\x0bEPIHK_7_487\x94K4\x8c\x0cEPIHK_7_1119\x94K5\x8c\x0cEPIHK_7_2575\x94K6\x8c\x0cEPIHK_7_5921\x94K7\x8c\rEPIHK_7_13619\x94K8\x8c\nEPIHK_8_40\x94K9\x8c\nEPIHK_8_92\x94K:\x8c\x0bEPIHK_8_212\x94K;\x8c\x0bEPIHK_8_487\x94K<\x8c\x0cEPIHK_8_1119\x94K=\x8c\x0cEPIHK_8_2575\x94K>\x8c\x0cEPIHK_8_5921\x94K?\x8c\rEPIHK_8_13619\x94K@\x8c\nEPIHK_9_40\x94KA\x8c\nEPIHK_9_92\x94KB\x8c\x0bEPIHK_9_212\x94KC\x8c\x0bEPIHK_9_487\x94KD\x8c\x0cEPIHK_9_1119\x94KE\x8c\x0cEPIHK_9_2575\x94KF\x8c\x0cEPIHK_9_5921\x94KG\x8c\rEPIHK_9_13619\x94KHj\xef\x03\x00\x00KIj\xf0\x03\x00\x00KJj\xf1\x03\x00\x00KKj\xf2\x03\x00\x00KLj\xf3\x03\x00\x00KMj\xf4\x03\x00\x00KNj\xf5\x03\x00\x00KOj\xf6\x03\x00\x00u\x8c\x06sample\x94}\x94(K\x00j\xa8\x02\x00\x00K\x01j\xa9\x02\x00\x00K\x02j\xaa\x02\x00\x00K\x03j\xab\x02\x00\x00K\x04j\xac\x02\x00\x00K\x05j\xad\x02\x00\x00K\x06j\xae\x02\x00\x00K\x07j\xaf\x02\x00\x00K\x08j\xb0\x02\x00\x00K\tj\xb1\x02\x00\x00K\nj\xb2\x02\x00\x00K\x0bj\xb3\x02\x00\x00K\x0cj\xb4\x02\x00\x00K\rj\xb5\x02\x00\x00K\x0ej\xb6\x02\x00\x00K\x0fj\xb7\x02\x00\x00K\x10j\xb8\x02\x00\x00K\x11j\xb9\x02\x00\x00K\x12j\xba\x02\x00\x00K\x13j\xbb\x02\x00\x00K\x14j\xbc\x02\x00\x00K\x15j\xbd\x02\x00\x00K\x16j\xbe\x02\x00\x00K\x17j\xbf\x02\x00\x00K\x18j\xc0\x02\x00\x00K\x19j\xc1\x02\x00\x00K\x1aj\xc2\x02\x00\x00K\x1bj\xc3\x02\x00\x00K\x1cj\xc4\x02\x00\x00K\x1dj\xc5\x02\x00\x00K\x1ej\xc6\x02\x00\x00K\x1fj\xc7\x02\x00\x00K j\xc8\x02\x00\x00K!j\xc9\x02\x00\x00K"j\xca\x02\x00\x00K#j\xcb\x02\x00\x00K$j\xcc\x02\x00\x00K%j\xcd\x02\x00\x00K&j\xce\x02\x00\x00K\'j\xcf\x02\x00\x00K(j\xd0\x02\x00\x00K)j\xd1\x02\x00\x00K*j\xd2\x02\x00\x00K+j\xd3\x02\x00\x00K,j\xd4\x02\x00\x00K-j\xd5\x02\x00\x00K.j\xd6\x02\x00\x00K/j\xd7\x02\x00\x00K0j\xd8\x02\x00\x00K1j\xd9\x02\x00\x00K2j\xda\x02\x00\x00K3j\xdb\x02\x00\x00K4j\xdc\x02\x00\x00K5j\xdd\x02\x00\x00K6j\xde\x02\x00\x00K7j\xdf\x02\x00\x00K8j\xe0\x02\x00\x00K9j\xe1\x02\x00\x00K:j\xe2\x02\x00\x00K;j\xe3\x02\x00\x00K<j\xe4\x02\x00\x00K=j\xe5\x02\x00\x00K>j\xe6\x02\x00\x00K?j\xe7\x02\x00\x00K@j\xe8\x02\x00\x00KAj\xe9\x02\x00\x00KBj\xea\x02\x00\x00KCj\xeb\x02\x00\x00KDj\xec\x02\x00\x00KEj\xed\x02\x00\x00KFj\xee\x02\x00\x00KGj\xef\x02\x00\x00KHj\xf0\x02\x00\x00KIj\xf1\x02\x00\x00KJj\xf2\x02\x00\x00KKj\xf3\x02\x00\x00KLj\xf4\x02\x00\x00KMj\xf5\x02\x00\x00KNj\xf6\x02\x00\x00KOj\xf7\x02\x00\x00u\x8c\x05plate\x94}\x94(K\x00\x8c\rplate12_EPIHK\x94K\x01jE\x04\x00\x00K\x02jE\x04\x00\x00K\x03jE\x04\x00\x00K\x04jE\x04\x00\x00K\x05jE\x04\x00\x00K\x06jE\x04\x00\x00K\x07jE\x04\x00\x00K\x08jE\x04\x00\x00K\tjE\x04\x00\x00K\njE\x04\x00\x00K\x0bjE\x04\x00\x00K\x0cjE\x04\x00\x00K\rjE\x04\x00\x00K\x0ejE\x04\x00\x00K\x0fjE\x04\x00\x00K\x10jE\x04\x00\x00K\x11jE\x04\x00\x00K\x12jE\x04\x00\x00K\x13jE\x04\x00\x00K\x14jE\x04\x00\x00K\x15jE\x04\x00\x00K\x16jE\x04\x00\x00K\x17jE\x04\x00\x00K\x18jE\x04\x00\x00K\x19jE\x04\x00\x00K\x1ajE\x04\x00\x00K\x1bjE\x04\x00\x00K\x1cjE\x04\x00\x00K\x1djE\x04\x00\x00K\x1ejE\x04\x00\x00K\x1fjE\x04\x00\x00K jE\x04\x00\x00K!jE\x04\x00\x00K"jE\x04\x00\x00K#jE\x04\x00\x00K$jE\x04\x00\x00K%jE\x04\x00\x00K&jE\x04\x00\x00K\'jE\x04\x00\x00K(jE\x04\x00\x00K)jE\x04\x00\x00K*jE\x04\x00\x00K+jE\x04\x00\x00K,jE\x04\x00\x00K-jE\x04\x00\x00K.jE\x04\x00\x00K/jE\x04\x00\x00K0jE\x04\x00\x00K1jE\x04\x00\x00K2jE\x04\x00\x00K3jE\x04\x00\x00K4jE\x04\x00\x00K5jE\x04\x00\x00K6jE\x04\x00\x00K7jE\x04\x00\x00K8jE\x04\x00\x00K9jE\x04\x00\x00K:jE\x04\x00\x00K;jE\x04\x00\x00K<jE\x04\x00\x00K=jE\x04\x00\x00K>jE\x04\x00\x00K?jE\x04\x00\x00K@jE\x04\x00\x00KAjE\x04\x00\x00KBjE\x04\x00\x00KCjE\x04\x00\x00KDjE\x04\x00\x00KEjE\x04\x00\x00KFjE\x04\x00\x00KGjE\x04\x00\x00KHjE\x04\x00\x00KIjE\x04\x00\x00KJjE\x04\x00\x00KKjE\x04\x00\x00KLjE\x04\x00\x00KMjE\x04\x00\x00KNjE\x04\x00\x00KOjE\x04\x00\x00u\x8c\x0fplate_replicate\x94}\x94(K\x00jE\x04\x00\x00K\x01jE\x04\x00\x00K\x02jE\x04\x00\x00K\x03jE\x04\x00\x00K\x04jE\x04\x00\x00K\x05jE\x04\x00\x00K\x06jE\x04\x00\x00K\x07jE\x04\x00\x00K\x08jE\x04\x00\x00K\tjE\x04\x00\x00K\njE\x04\x00\x00K\x0bjE\x04\x00\x00K\x0cjE\x04\x00\x00K\rjE\x04\x00\x00K\x0ejE\x04\x00\x00K\x0fjE\x04\x00\x00K\x10jE\x04\x00\x00K\x11jE\x04\x00\x00K\x12jE\x04\x00\x00K\x13jE\x04\x00\x00K\x14jE\x04\x00\x00K\x15jE\x04\x00\x00K\x16jE\x04\x00\x00K\x17jE\x04\x00\x00K\x18jE\x04\x00\x00K\x19jE\x04\x00\x00K\x1ajE\x04\x00\x00K\x1bjE\x04\x00\x00K\x1cjE\x04\x00\x00K\x1djE\x04\x00\x00K\x1ejE\x04\x00\x00K\x1fjE\x04\x00\x00K jE\x04\x00\x00K!jE\x04\x00\x00K"jE\x04\x00\x00K#jE\x04\x00\x00K$jE\x04\x00\x00K%jE\x04\x00\x00K&jE\x04\x00\x00K\'jE\x04\x00\x00K(jE\x04\x00\x00K)jE\x04\x00\x00K*jE\x04\x00\x00K+jE\x04\x00\x00K,jE\x04\x00\x00K-jE\x04\x00\x00K.jE\x04\x00\x00K/jE\x04\x00\x00K0jE\x04\x00\x00K1jE\x04\x00\x00K2jE\x04\x00\x00K3jE\x04\x00\x00K4jE\x04\x00\x00K5jE\x04\x00\x00K6jE\x04\x00\x00K7jE\x04\x00\x00K8jE\x04\x00\x00K9jE\x04\x00\x00K:jE\x04\x00\x00K;jE\x04\x00\x00K<jE\x04\x00\x00K=jE\x04\x00\x00K>jE\x04\x00\x00K?jE\x04\x00\x00K@jE\x04\x00\x00KAjE\x04\x00\x00KBjE\x04\x00\x00KCjE\x04\x00\x00KDjE\x04\x00\x00KEjE\x04\x00\x00KFjE\x04\x00\x00KGjE\x04\x00\x00KH\x8c\x0fplate12_EPIHK-1\x94KI\x8c\x0fplate12_EPIHK-2\x94KJ\x8c\x0fplate12_EPIHK-3\x94KK\x8c\x0fplate12_EPIHK-4\x94KL\x8c\x0fplate12_EPIHK-5\x94KM\x8c\x0fplate12_EPIHK-6\x94KN\x8c\x0fplate12_EPIHK-7\x94KO\x8c\x0fplate12_EPIHK-8\x94uuu\x8c\x04png8\x94e}\x94(h\xac}\x94(\x8c\x0eviral_barcodes\x94K\x00N\x86\x94\x8c\x16neut_standard_barcodes\x94K\x01N\x86\x94j7\x03\x00\x00K\x02N\x86\x94\x8c\x0cplate_params\x94K\x03N\x86\x94\x8c\x14curve_display_method\x94K\x04N\x86\x94uh\xb4]\x94(h\xb6h\xb7eh\xb6h\xb9)\x81\x94}\x94h\xbch\xb6sbh\xb7h\xb9)\x81\x94}\x94h\xbch\xb7sbjS\x04\x00\x00h\xecjU\x04\x00\x00j\x9b\x02\x00\x00j7\x03\x00\x00j\xa7\x02\x00\x00jX\x04\x00\x00j\xf8\x02\x00\x00jZ\x04\x00\x00jP\x04\x00\x00ub\x8c\r_params_types\x94}\x94\x8c\twildcards\x94h\x06\x8c\tWildcards\x94\x93\x94)\x81\x94\x8c\rplate12_EPIHK\x94a}\x94(h\xac}\x94\x8c\x05plate\x94K\x00N\x86\x94sh\xb4]\x94(h\xb6h\xb7eh\xb6h\xb9)\x81\x94}\x94h\xbch\xb6sbh\xb7h\xb9)\x81\x94}\x94h\xbch\xb7sbjC\x04\x00\x00jg\x04\x00\x00ub\x8c\x07threads\x94K\x01\x8c\tresources\x94h\x06\x8c\tResources\x94\x93\x94)\x81\x94(K\x01K\x01\x8c\x15/loc/scratch/30805658\x94e}\x94(h\xac}\x94(\x8c\x06_cores\x94K\x00N\x86\x94\x8c\x06_nodes\x94K\x01N\x86\x94\x8c\x06tmpdir\x94K\x02N\x86\x94uh\xb4]\x94(h\xb6h\xb7eh\xb6h\xb9)\x81\x94}\x94h\xbch\xb6sbh\xb7h\xb9)\x81\x94}\x94h\xbch\xb7sbjy\x04\x00\x00K\x01j{\x04\x00\x00K\x01j}\x04\x00\x00jv\x04\x00\x00ub\x8c\x03log\x94h\x06\x8c\x03Log\x94\x93\x94)\x81\x94\x8c8results/plates/plate12_EPIHK/process_plate12_EPIHK.ipynb\x94a}\x94(h\xac}\x94\x8c\x08notebook\x94K\x00N\x86\x94sh\xb4]\x94(h\xb6h\xb7eh\xb6h\xb9)\x81\x94}\x94h\xbch\xb6sbh\xb7h\xb9)\x81\x94}\x94h\xbch\xb7sbj\x8b\x04\x00\x00j\x88\x04\x00\x00ub\x8c\x06config\x94}\x94(\x8c\x16recent_vaccine_strains\x94}\x94(\x8c\x1fA/Croatia/10136RV/2023-egg_H3N2\x94\x8c\x1b2025-2026 egg-based vaccine\x94\x8c!A/DistrictOfColumbia/27/2023_H3N2\x94\x8c\x1c2025-2026 cell-based vaccine\x94\x8c!A/Victoria/4897/2022_IVR-238_H1N1\x94\x8c\x1b2025-2026 egg-based vaccine\x94\x8c\x18A/Wisconsin/67/2022_H1N1\x94\x8c\x1c2025-2026 cell-based vaccine\x94\x8c\x16A/Thailand/8/2022_H3N2\x94\x8c\x1b2024-2025 egg-based vaccine\x94\x8c\x1cA/Massachusetts/18/2022_H3N2\x94\x8c\x1c2024-2025 cell-based vaccine\x94u\x8c\x1chuman_sera_groups_to_exclude\x94]\x94\x8c\x03FCI\x94a\x8c\x15human_sera_to_exclude\x94]\x94(\x8c\x06SCH_19\x94\x8c\x06SCH_22\x94\x8c\x06SCH_26\x94e\x8c\x17human_sera_plots_params\x94}\x94(\x8c\x0ctiter_cutoff\x94K\x8c\x8c\x11titer_lower_limit\x94K(\x8c\x10min_frac_strains\x94G?\xec\xcc\xcc\xcc\xcc\xcc\xcd\x8c\rmin_frac_sera\x94G?\xe8\x00\x00\x00\x00\x00\x00\x8c\x0fmin_frac_action\x94\x8c\x05raise\x94u\x8c\x10seqneut-pipeline\x94\x8c\x10seqneut-pipeline\x94\x8c\x04docs\x94\x8c\x04docs\x94\x8c\x0bdescription\x94X\x1b\x01\x00\x00# Sequencing-based neutralization assays using human serum samples collected in late 2024-2025 and combined pdmH1N1 and H3N2 influenza library\n\nThe numerical data and computer code are at [https://github.com/jbloomlab/flu-seqneut-2025](https://github.com/jbloomlab/flu-seqneut-2025)\n\x94\x8c\x0fviral_libraries\x94}\x94(\x8c!flu-seqneut-2025_library_designed\x94\x8cDdata/viral_libraries/flu-seqneut-2025-barcode-to-strain_designed.csv\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8cBdata/viral_libraries/flu-seqneut-2025-barcode-to-strain_actual.csv\x94u\x8c\x17viral_strain_plot_order\x94\x8c4data/viral_libraries/flu-seqneut-2025_plot_order.csv\x94\x8c\x12neut_standard_sets\x94}\x94\x8c\x08loes2023\x94\x8c3data/neut_standard_sets/loes2023_neut_standards.csv\x94s\x8c\x1eillumina_barcode_parser_params\x94}\x94(j,\x03\x00\x00j-\x03\x00\x00j.\x03\x00\x00j/\x03\x00\x00j0\x03\x00\x00K\x14j1\x03\x00\x00K\x04j2\x03\x00\x00j3\x03\x00\x00u\x8c#default_process_plate_qc_thresholds\x94}\x94(j\x07\x03\x00\x00M\xf4\x01j\x08\x03\x00\x00G?tz\xe1G\xae\x14{j\t\x03\x00\x00}\x94(j\x0b\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x0c\x03\x00\x00K\x04j\r\x03\x00\x00K\x02uj\x0e\x03\x00\x00}\x94(j\x10\x03\x00\x00G?tz\xe1G\xae\x14{j\x11\x03\x00\x00K\x04j\x12\x03\x00\x00K\x02uj\x13\x03\x00\x00M\xe8\x03j\x14\x03\x00\x00Kdj\x15\x03\x00\x00K\x03j\x16\x03\x00\x00K\x06u\x8c%default_process_plate_curvefit_params\x94}\x94(j\x19\x03\x00\x00K\x01j\x1a\x03\x00\x00]\x94(G?\xe3333333K\x01ej\x1c\x03\x00\x00K\x00j\x1d\x03\x00\x00]\x94(G?\xe9\x99\x99\x99\x99\x99\x9aK\neu\x8c!default_process_plate_curvefit_qc\x94}\x94(j!\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j"\x03\x00\x00}\x94(j$\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j%\x03\x00\x00G?\xc3333333uj&\x03\x00\x00]\x94j(\x03\x00\x00]\x94u\x8c\x16default_serum_titer_as\x94\x8c\x08midpoint\x94\x8c\x1bdefault_serum_qc_thresholds\x94}\x94(\x8c\x0emin_replicates\x94K\x01\x8c\x1bmax_fold_change_from_median\x94K\x06\x8c\x11viruses_ignore_qc\x94]\x94u\x8c\x16sera_override_defaults\x94}\x94\x8c\x06plates\x94}\x94(\x8c\x08plate1-2\x94}\x94(\x8c\x05group\x94\x8c\x04UWMC\x94\x8c\x04date\x94\x8c\x08datetime\x94\x8c\x04date\x94\x93\x94C\x04\x07\xe9\x08\x07\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c#data/plates/2025-08-11_plate1-2.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\x05wells\x94]\x94(\x8c\x02H1\x94\x8c\x02H2\x94\x8c\x02H3\x94\x8c\x02H4\x94\x8c\x02H5\x94\x8c\x02H6\x94\x8c\x02H7\x94\x8c\x02H8\x94\x8c\x02H9\x94\x8c\x03H10\x94\x8c\x03H11\x94\x8c\x03H12\x94es\x8c\rqc_thresholds\x94}\x94(j\x07\x03\x00\x00M\xf4\x01j\x08\x03\x00\x00G?tz\xe1G\xae\x14{j\t\x03\x00\x00}\x94(j\x0b\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x0c\x03\x00\x00K\x04j\r\x03\x00\x00K\x02uj\x0e\x03\x00\x00}\x94(j\x10\x03\x00\x00G?tz\xe1G\xae\x14{j\x11\x03\x00\x00K\x04j\x12\x03\x00\x00K\x02uj\x13\x03\x00\x00M\xe8\x03j\x14\x03\x00\x00Kdj\x15\x03\x00\x00K\x03j\x16\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x19\x03\x00\x00K\x01j\x1a\x03\x00\x00j\xcc\x04\x00\x00j\x1c\x03\x00\x00K\x00j\x1d\x03\x00\x00j\xcd\x04\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j!\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j"\x03\x00\x00}\x94(j$\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j%\x03\x00\x00G?\xc3333333uj&\x03\x00\x00j\xd1\x04\x00\x00j(\x03\x00\x00j\xd2\x04\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06ATCGAT\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x08plate2-2\x94}\x94(\x8c\x05group\x94\x8c\x04UWMC\x94\x8c\x04date\x94j\xe6\x04\x00\x00C\x04\x07\xe9\x08\x07\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c#data/plates/2025-08-11_plate2-2.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x07\x03\x00\x00M\xf4\x01j\x08\x03\x00\x00G?tz\xe1G\xae\x14{j\t\x03\x00\x00}\x94(j\x0b\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x0c\x03\x00\x00K\x04j\r\x03\x00\x00K\x02uj\x0e\x03\x00\x00}\x94(j\x10\x03\x00\x00G?tz\xe1G\xae\x14{j\x11\x03\x00\x00K\x04j\x12\x03\x00\x00K\x02uj\x13\x03\x00\x00M\xe8\x03j\x14\x03\x00\x00Kdj\x15\x03\x00\x00K\x03j\x16\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x19\x03\x00\x00K\x01j\x1a\x03\x00\x00j\xcc\x04\x00\x00j\x1c\x03\x00\x00K\x00j\x1d\x03\x00\x00j\xcd\x04\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j!\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j"\x03\x00\x00}\x94(j$\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j%\x03\x00\x00G?\xc3333333uj&\x03\x00\x00j\xd1\x04\x00\x00j(\x03\x00\x00j\xd2\x04\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06TGACGC\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x06plate3\x94}\x94(\x8c\x05group\x94\x8c\x04UWMC\x94\x8c\x04date\x94j\xe6\x04\x00\x00C\x04\x07\xe9\x08\x07\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c!data/plates/2025-08-11_plate3.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x07\x03\x00\x00M\xf4\x01j\x08\x03\x00\x00G?tz\xe1G\xae\x14{j\t\x03\x00\x00}\x94(j\x0b\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x0c\x03\x00\x00K\x04j\r\x03\x00\x00K\x02uj\x0e\x03\x00\x00}\x94(j\x10\x03\x00\x00G?tz\xe1G\xae\x14{j\x11\x03\x00\x00K\x04j\x12\x03\x00\x00K\x02uj\x13\x03\x00\x00M\xe8\x03j\x14\x03\x00\x00Kdj\x15\x03\x00\x00K\x03j\x16\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x19\x03\x00\x00K\x01j\x1a\x03\x00\x00j\xcc\x04\x00\x00j\x1c\x03\x00\x00K\x00j\x1d\x03\x00\x00j\xcd\x04\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j!\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j"\x03\x00\x00}\x94(j$\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j%\x03\x00\x00G?\xc3333333uj&\x03\x00\x00j\xd1\x04\x00\x00j(\x03\x00\x00j\xd2\x04\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06CAGTTG\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x06plate4\x94}\x94(\x8c\x05group\x94\x8c\x04UWMC\x94\x8c\x04date\x94j\xe6\x04\x00\x00C\x04\x07\xe9\x08\x07\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c!data/plates/2025-08-11_plate4.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x07\x03\x00\x00M\xf4\x01j\x08\x03\x00\x00G?tz\xe1G\xae\x14{j\t\x03\x00\x00}\x94(j\x0b\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x0c\x03\x00\x00K\x04j\r\x03\x00\x00K\x02uj\x0e\x03\x00\x00}\x94(j\x10\x03\x00\x00G?tz\xe1G\xae\x14{j\x11\x03\x00\x00K\x04j\x12\x03\x00\x00K\x02uj\x13\x03\x00\x00M\xe8\x03j\x14\x03\x00\x00Kdj\x15\x03\x00\x00K\x03j\x16\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x19\x03\x00\x00K\x01j\x1a\x03\x00\x00j\xcc\x04\x00\x00j\x1c\x03\x00\x00K\x00j\x1d\x03\x00\x00j\xcd\x04\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j!\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j"\x03\x00\x00}\x94(j$\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j%\x03\x00\x00G?\xc3333333uj&\x03\x00\x00j\xd1\x04\x00\x00j(\x03\x00\x00j\xd2\x04\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06GTCTAA\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x06plate6\x94}\x94(\x8c\x05group\x94\x8c\x03FCI\x94\x8c\x04date\x94j\xe6\x04\x00\x00C\x04\x07\xe9\x08\x0c\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c!data/plates/2025-08-12_plate6.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x07\x03\x00\x00M\xf4\x01j\x08\x03\x00\x00G?tz\xe1G\xae\x14{j\t\x03\x00\x00}\x94(j\x0b\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x0c\x03\x00\x00K\x04j\r\x03\x00\x00K\x02uj\x0e\x03\x00\x00}\x94(j\x10\x03\x00\x00G?tz\xe1G\xae\x14{j\x11\x03\x00\x00K\x04j\x12\x03\x00\x00K\x02uj\x13\x03\x00\x00M\xe8\x03j\x14\x03\x00\x00Kdj\x15\x03\x00\x00K\x03j\x16\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x19\x03\x00\x00K\x01j\x1a\x03\x00\x00j\xcc\x04\x00\x00j\x1c\x03\x00\x00K\x00j\x1d\x03\x00\x00j\xcd\x04\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j!\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j"\x03\x00\x00}\x94(j$\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j%\x03\x00\x00G?\xc3333333uj&\x03\x00\x00j\xd1\x04\x00\x00j(\x03\x00\x00j\xd2\x04\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06ATCGAT\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\nplate7_FCI\x94}\x94(\x8c\x05group\x94\x8c\x03FCI\x94\x8c\x04date\x94j\xe6\x04\x00\x00C\x04\x07\xe9\x08\x0c\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c%data/plates/2025-08-12_plate7_FCI.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x07\x03\x00\x00M\xf4\x01j\x08\x03\x00\x00G?tz\xe1G\xae\x14{j\t\x03\x00\x00}\x94(j\x0b\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x0c\x03\x00\x00K\x04j\r\x03\x00\x00K\x02uj\x0e\x03\x00\x00}\x94(j\x10\x03\x00\x00G?tz\xe1G\xae\x14{j\x11\x03\x00\x00K\x04j\x12\x03\x00\x00K\x02uj\x13\x03\x00\x00M\xe8\x03j\x14\x03\x00\x00Kdj\x15\x03\x00\x00K\x03j\x16\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x19\x03\x00\x00K\x01j\x1a\x03\x00\x00j\xcc\x04\x00\x00j\x1c\x03\x00\x00K\x00j\x1d\x03\x00\x00j\xcd\x04\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j!\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j"\x03\x00\x00}\x94(j$\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j%\x03\x00\x00G?\xc3333333uj&\x03\x00\x00j\xd1\x04\x00\x00j(\x03\x00\x00j\xd2\x04\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06TGACGC\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\nplate7_SCH\x94}\x94(\x8c\x05group\x94\x8c\x03SCH\x94\x8c\x04date\x94j\xe6\x04\x00\x00C\x04\x07\xe9\x08\x0c\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c%data/plates/2025-08-12_plate7_SCH.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x07\x03\x00\x00M\xf4\x01j\x08\x03\x00\x00G?tz\xe1G\xae\x14{j\t\x03\x00\x00}\x94(j\x0b\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x0c\x03\x00\x00K\x04j\r\x03\x00\x00K\x02uj\x0e\x03\x00\x00}\x94(j\x10\x03\x00\x00G?tz\xe1G\xae\x14{j\x11\x03\x00\x00K\x04j\x12\x03\x00\x00K\x02uj\x13\x03\x00\x00M\xe8\x03j\x14\x03\x00\x00Kdj\x15\x03\x00\x00K\x03j\x16\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x19\x03\x00\x00K\x01j\x1a\x03\x00\x00j\xcc\x04\x00\x00j\x1c\x03\x00\x00K\x00j\x1d\x03\x00\x00j\xcd\x04\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j!\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j"\x03\x00\x00}\x94(j$\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j%\x03\x00\x00G?\xc3333333uj&\x03\x00\x00j\xd1\x04\x00\x00j(\x03\x00\x00j\xd2\x04\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06TGACGC\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x06plate8\x94}\x94(\x8c\x05group\x94\x8c\x03SCH\x94\x8c\x04date\x94j\xe6\x04\x00\x00C\x04\x07\xe9\x08\x0c\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c!data/plates/2025-08-12_plate8.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x07\x03\x00\x00M\xf4\x01j\x08\x03\x00\x00G?tz\xe1G\xae\x14{j\t\x03\x00\x00}\x94(j\x0b\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x0c\x03\x00\x00K\x04j\r\x03\x00\x00K\x02uj\x0e\x03\x00\x00}\x94(j\x10\x03\x00\x00G?tz\xe1G\xae\x14{j\x11\x03\x00\x00K\x04j\x12\x03\x00\x00K\x02uj\x13\x03\x00\x00M\xe8\x03j\x14\x03\x00\x00Kdj\x15\x03\x00\x00K\x03j\x16\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x19\x03\x00\x00K\x01j\x1a\x03\x00\x00j\xcc\x04\x00\x00j\x1c\x03\x00\x00K\x00j\x1d\x03\x00\x00j\xcd\x04\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j!\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j"\x03\x00\x00}\x94(j$\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j%\x03\x00\x00G?\xc3333333uj&\x03\x00\x00j\xd1\x04\x00\x00j(\x03\x00\x00j\xd2\x04\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06CAGTTG\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x06plate9\x94}\x94(\x8c\x05group\x94\x8c\x03SCH\x94\x8c\x04date\x94j\xe6\x04\x00\x00C\x04\x07\xe9\x08\r\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c!data/plates/2025-08-13_plate9.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x07\x03\x00\x00M\xf4\x01j\x08\x03\x00\x00G?tz\xe1G\xae\x14{j\t\x03\x00\x00}\x94(j\x0b\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x0c\x03\x00\x00K\x04j\r\x03\x00\x00K\x02uj\x0e\x03\x00\x00}\x94(j\x10\x03\x00\x00G?tz\xe1G\xae\x14{j\x11\x03\x00\x00K\x04j\x12\x03\x00\x00K\x02uj\x13\x03\x00\x00M\xe8\x03j\x14\x03\x00\x00Kdj\x15\x03\x00\x00K\x03j\x16\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x19\x03\x00\x00K\x01j\x1a\x03\x00\x00j\xcc\x04\x00\x00j\x1c\x03\x00\x00K\x00j\x1d\x03\x00\x00j\xcd\x04\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j!\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j"\x03\x00\x00}\x94(j$\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j%\x03\x00\x00G?\xc3333333uj&\x03\x00\x00j\xd1\x04\x00\x00j(\x03\x00\x00j\xd2\x04\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06GTCTAA\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate10\x94}\x94(\x8c\x05group\x94\x8c\x03SCH\x94\x8c\x04date\x94j\xe6\x04\x00\x00C\x04\x07\xe9\x08\r\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c"data/plates/2025-08-13_plate10.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x07\x03\x00\x00M\xf4\x01j\x08\x03\x00\x00G?tz\xe1G\xae\x14{j\t\x03\x00\x00}\x94(j\x0b\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x0c\x03\x00\x00K\x04j\r\x03\x00\x00K\x02uj\x0e\x03\x00\x00}\x94(j\x10\x03\x00\x00G?tz\xe1G\xae\x14{j\x11\x03\x00\x00K\x04j\x12\x03\x00\x00K\x02uj\x13\x03\x00\x00M\xe8\x03j\x14\x03\x00\x00Kdj\x15\x03\x00\x00K\x03j\x16\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x19\x03\x00\x00K\x01j\x1a\x03\x00\x00j\xcc\x04\x00\x00j\x1c\x03\x00\x00K\x00j\x1d\x03\x00\x00j\xcd\x04\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j!\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j"\x03\x00\x00}\x94(j$\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j%\x03\x00\x00G?\xc3333333uj&\x03\x00\x00j\xd1\x04\x00\x00j(\x03\x00\x00j\xd2\x04\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06ACGCTG\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate11\x94}\x94(\x8c\x05group\x94\x8c\x03SCH\x94\x8c\x04date\x94j\xe6\x04\x00\x00C\x04\x07\xe9\x08\r\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c"data/plates/2025-08-13_plate11.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x07\x03\x00\x00M\xf4\x01j\x08\x03\x00\x00G?tz\xe1G\xae\x14{j\t\x03\x00\x00}\x94(j\x0b\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x0c\x03\x00\x00K\x04j\r\x03\x00\x00K\x02uj\x0e\x03\x00\x00}\x94(j\x10\x03\x00\x00G?tz\xe1G\xae\x14{j\x11\x03\x00\x00K\x04j\x12\x03\x00\x00K\x02uj\x13\x03\x00\x00M\xe8\x03j\x14\x03\x00\x00Kdj\x15\x03\x00\x00K\x03j\x16\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x19\x03\x00\x00K\x01j\x1a\x03\x00\x00j\xcc\x04\x00\x00j\x1c\x03\x00\x00K\x00j\x1d\x03\x00\x00j\xcd\x04\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j!\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j"\x03\x00\x00}\x94(j$\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j%\x03\x00\x00G?\xc3333333uj&\x03\x00\x00j\xd1\x04\x00\x00j(\x03\x00\x00j\xd2\x04\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06TATAGC\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x0bplate12_SCH\x94}\x94(\x8c\x05group\x94\x8c\x03SCH\x94\x8c\x04date\x94j\xe6\x04\x00\x00C\x04\x07\xe9\x08\r\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c&data/plates/2025-08-13_plate12_SCH.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x07\x03\x00\x00M\xf4\x01j\x08\x03\x00\x00G?tz\xe1G\xae\x14{j\t\x03\x00\x00}\x94(j\x0b\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x0c\x03\x00\x00K\x04j\r\x03\x00\x00K\x02uj\x0e\x03\x00\x00}\x94(j\x10\x03\x00\x00G?tz\xe1G\xae\x14{j\x11\x03\x00\x00K\x04j\x12\x03\x00\x00K\x02uj\x13\x03\x00\x00M\xe8\x03j\x14\x03\x00\x00Kdj\x15\x03\x00\x00K\x03j\x16\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x19\x03\x00\x00K\x01j\x1a\x03\x00\x00j\xcc\x04\x00\x00j\x1c\x03\x00\x00K\x00j\x1d\x03\x00\x00j\xcd\x04\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j!\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j"\x03\x00\x00}\x94(j$\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j%\x03\x00\x00G?\xc3333333uj&\x03\x00\x00j\xd1\x04\x00\x00j(\x03\x00\x00j\xd2\x04\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06CGAGCT\x94\x8c\x12upstream2_mismatch\x94K\x01uujE\x04\x00\x00}\x94(j\xf9\x02\x00\x00j\xfa\x02\x00\x00j\xfb\x02\x00\x00j\xe6\x04\x00\x00C\x04\x07\xe9\x08\r\x94\x85\x94R\x94j\xfd\x02\x00\x00j\xfe\x02\x00\x00j\xff\x02\x00\x00j\x00\x03\x00\x00j\x01\x03\x00\x00j\x02\x03\x00\x00j\x03\x03\x00\x00}\x94j\x05\x03\x00\x00}\x94(j\x07\x03\x00\x00M\xf4\x01j\x08\x03\x00\x00G?tz\xe1G\xae\x14{j\t\x03\x00\x00}\x94(j\x0b\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x0c\x03\x00\x00K\x04j\r\x03\x00\x00K\x02uj\x0e\x03\x00\x00}\x94(j\x10\x03\x00\x00G?tz\xe1G\xae\x14{j\x11\x03\x00\x00K\x04j\x12\x03\x00\x00K\x02uj\x13\x03\x00\x00M\xe8\x03j\x14\x03\x00\x00Kdj\x15\x03\x00\x00K\x03j\x16\x03\x00\x00K\x06uj\x17\x03\x00\x00}\x94(j\x19\x03\x00\x00K\x01j\x1a\x03\x00\x00j\xcc\x04\x00\x00j\x1c\x03\x00\x00K\x00j\x1d\x03\x00\x00j\xcd\x04\x00\x00uj\x1f\x03\x00\x00}\x94(j!\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j"\x03\x00\x00}\x94(j$\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j%\x03\x00\x00G?\xc3333333uj&\x03\x00\x00j\xd1\x04\x00\x00j(\x03\x00\x00j\xd2\x04\x00\x00uj*\x03\x00\x00}\x94(j4\x03\x00\x00j5\x03\x00\x00j6\x03\x00\x00K\x01uu\x8c\x07plate13\x94}\x94(\x8c\x05group\x94\x8c\x05EPIHK\x94\x8c\x04date\x94j\xe6\x04\x00\x00C\x04\x07\xe9\x08\x12\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c"data/plates/2025-08-18_plate13.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x07\x03\x00\x00M\xf4\x01j\x08\x03\x00\x00G?tz\xe1G\xae\x14{j\t\x03\x00\x00}\x94(j\x0b\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x0c\x03\x00\x00K\x04j\r\x03\x00\x00K\x02uj\x0e\x03\x00\x00}\x94(j\x10\x03\x00\x00G?tz\xe1G\xae\x14{j\x11\x03\x00\x00K\x04j\x12\x03\x00\x00K\x02uj\x13\x03\x00\x00M\xe8\x03j\x14\x03\x00\x00Kdj\x15\x03\x00\x00K\x03j\x16\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x19\x03\x00\x00K\x01j\x1a\x03\x00\x00j\xcc\x04\x00\x00j\x1c\x03\x00\x00K\x00j\x1d\x03\x00\x00j\xcd\x04\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j!\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j"\x03\x00\x00}\x94(j$\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j%\x03\x00\x00G?\xc3333333uj&\x03\x00\x00j\xd1\x04\x00\x00j(\x03\x00\x00j\xd2\x04\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06GCTACA\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate14\x94}\x94(\x8c\x05group\x94\x8c\x05EPIHK\x94\x8c\x04date\x94j\xe6\x04\x00\x00C\x04\x07\xe9\x08\x12\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c"data/plates/2025-08-18_plate14.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x07\x03\x00\x00M\xf4\x01j\x08\x03\x00\x00G?tz\xe1G\xae\x14{j\t\x03\x00\x00}\x94(j\x0b\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x0c\x03\x00\x00K\x04j\r\x03\x00\x00K\x02uj\x0e\x03\x00\x00}\x94(j\x10\x03\x00\x00G?tz\xe1G\xae\x14{j\x11\x03\x00\x00K\x04j\x12\x03\x00\x00K\x02uj\x13\x03\x00\x00M\xe8\x03j\x14\x03\x00\x00Kdj\x15\x03\x00\x00K\x03j\x16\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x19\x03\x00\x00K\x01j\x1a\x03\x00\x00j\xcc\x04\x00\x00j\x1c\x03\x00\x00K\x00j\x1d\x03\x00\x00j\xcd\x04\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j!\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j"\x03\x00\x00}\x94(j$\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j%\x03\x00\x00G?\xc3333333uj&\x03\x00\x00j\xd1\x04\x00\x00j(\x03\x00\x00j\xd2\x04\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06ATCGAT\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate15\x94}\x94(\x8c\x05group\x94\x8c\x05EPIHK\x94\x8c\x04date\x94j\xe6\x04\x00\x00C\x04\x07\xe9\x08\x12\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c"data/plates/2025-08-18_plate15.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x07\x03\x00\x00M\xf4\x01j\x08\x03\x00\x00G?tz\xe1G\xae\x14{j\t\x03\x00\x00}\x94(j\x0b\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x0c\x03\x00\x00K\x04j\r\x03\x00\x00K\x02uj\x0e\x03\x00\x00}\x94(j\x10\x03\x00\x00G?tz\xe1G\xae\x14{j\x11\x03\x00\x00K\x04j\x12\x03\x00\x00K\x02uj\x13\x03\x00\x00M\xe8\x03j\x14\x03\x00\x00Kdj\x15\x03\x00\x00K\x03j\x16\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x19\x03\x00\x00K\x01j\x1a\x03\x00\x00j\xcc\x04\x00\x00j\x1c\x03\x00\x00K\x00j\x1d\x03\x00\x00j\xcd\x04\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j!\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j"\x03\x00\x00}\x94(j$\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j%\x03\x00\x00G?\xc3333333uj&\x03\x00\x00j\xd1\x04\x00\x00j(\x03\x00\x00j\xd2\x04\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06TGACGC\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate16\x94}\x94(\x8c\x05group\x94\x8c\x04NIID\x94\x8c\x04date\x94j\xe6\x04\x00\x00C\x04\x07\xe9\x08\x12\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c"data/plates/2025-08-18_plate16.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x07\x03\x00\x00M\xf4\x01j\x08\x03\x00\x00G?tz\xe1G\xae\x14{j\t\x03\x00\x00}\x94(j\x0b\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x0c\x03\x00\x00K\x04j\r\x03\x00\x00K\x02uj\x0e\x03\x00\x00}\x94(j\x10\x03\x00\x00G?tz\xe1G\xae\x14{j\x11\x03\x00\x00K\x04j\x12\x03\x00\x00K\x02uj\x13\x03\x00\x00M\xe8\x03j\x14\x03\x00\x00Kdj\x15\x03\x00\x00K\x03j\x16\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x19\x03\x00\x00K\x01j\x1a\x03\x00\x00j\xcc\x04\x00\x00j\x1c\x03\x00\x00K\x00j\x1d\x03\x00\x00j\xcd\x04\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j!\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j"\x03\x00\x00}\x94(j$\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j%\x03\x00\x00G?\xc3333333uj&\x03\x00\x00j\xd1\x04\x00\x00j(\x03\x00\x00j\xd2\x04\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06CAGTTG\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate17\x94}\x94(\x8c\x05group\x94\x8c\x04NIID\x94\x8c\x04date\x94j\xe6\x04\x00\x00C\x04\x07\xe9\x08\x14\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c"data/plates/2025-08-20_plate17.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x07\x03\x00\x00M\xf4\x01j\x08\x03\x00\x00G?tz\xe1G\xae\x14{j\t\x03\x00\x00}\x94(j\x0b\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x0c\x03\x00\x00K\x04j\r\x03\x00\x00K\x02uj\x0e\x03\x00\x00}\x94(j\x10\x03\x00\x00G?tz\xe1G\xae\x14{j\x11\x03\x00\x00K\x04j\x12\x03\x00\x00K\x02uj\x13\x03\x00\x00M\xe8\x03j\x14\x03\x00\x00Kdj\x15\x03\x00\x00K\x03j\x16\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x19\x03\x00\x00K\x01j\x1a\x03\x00\x00j\xcc\x04\x00\x00j\x1c\x03\x00\x00K\x00j\x1d\x03\x00\x00j\xcd\x04\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j!\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j"\x03\x00\x00}\x94(j$\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j%\x03\x00\x00G?\xc3333333uj&\x03\x00\x00j\xd1\x04\x00\x00j(\x03\x00\x00j\xd2\x04\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06GTCTAA\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate18\x94}\x94(\x8c\x05group\x94\x8c\x04NIID\x94\x8c\x04date\x94j\xe6\x04\x00\x00C\x04\x07\xe9\x08\x14\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c"data/plates/2025-08-20_plate18.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x07\x03\x00\x00M\xf4\x01j\x08\x03\x00\x00G?tz\xe1G\xae\x14{j\t\x03\x00\x00}\x94(j\x0b\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x0c\x03\x00\x00K\x04j\r\x03\x00\x00K\x02uj\x0e\x03\x00\x00}\x94(j\x10\x03\x00\x00G?tz\xe1G\xae\x14{j\x11\x03\x00\x00K\x04j\x12\x03\x00\x00K\x02uj\x13\x03\x00\x00M\xe8\x03j\x14\x03\x00\x00Kdj\x15\x03\x00\x00K\x03j\x16\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x19\x03\x00\x00K\x01j\x1a\x03\x00\x00j\xcc\x04\x00\x00j\x1c\x03\x00\x00K\x00j\x1d\x03\x00\x00j\xcd\x04\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j!\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j"\x03\x00\x00}\x94(j$\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j%\x03\x00\x00G?\xc3333333uj&\x03\x00\x00j\xd1\x04\x00\x00j(\x03\x00\x00j\xd2\x04\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06ACGCTG\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate19\x94}\x94(\x8c\x05group\x94\x8c\x04NIID\x94\x8c\x04date\x94j\xe6\x04\x00\x00C\x04\x07\xe9\x08\x14\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c"data/plates/2025-08-20_plate19.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x07\x03\x00\x00M\xf4\x01j\x08\x03\x00\x00G?tz\xe1G\xae\x14{j\t\x03\x00\x00}\x94(j\x0b\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x0c\x03\x00\x00K\x04j\r\x03\x00\x00K\x02uj\x0e\x03\x00\x00}\x94(j\x10\x03\x00\x00G?tz\xe1G\xae\x14{j\x11\x03\x00\x00K\x04j\x12\x03\x00\x00K\x02uj\x13\x03\x00\x00M\xe8\x03j\x14\x03\x00\x00Kdj\x15\x03\x00\x00K\x03j\x16\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x19\x03\x00\x00K\x01j\x1a\x03\x00\x00j\xcc\x04\x00\x00j\x1c\x03\x00\x00K\x00j\x1d\x03\x00\x00j\xcd\x04\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j!\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j"\x03\x00\x00}\x94(j$\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j%\x03\x00\x00G?\xc3333333uj&\x03\x00\x00j\xd1\x04\x00\x00j(\x03\x00\x00j\xd2\x04\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06TATAGC\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate20\x94}\x94(\x8c\x05group\x94\x8c\x04NIID\x94\x8c\x04date\x94j\xe6\x04\x00\x00C\x04\x07\xe9\x08\x14\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c"data/plates/2025-08-20_plate20.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x07\x03\x00\x00M\xf4\x01j\x08\x03\x00\x00G?tz\xe1G\xae\x14{j\t\x03\x00\x00}\x94(j\x0b\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x0c\x03\x00\x00K\x04j\r\x03\x00\x00K\x02uj\x0e\x03\x00\x00}\x94(j\x10\x03\x00\x00G?tz\xe1G\xae\x14{j\x11\x03\x00\x00K\x04j\x12\x03\x00\x00K\x02uj\x13\x03\x00\x00M\xe8\x03j\x14\x03\x00\x00Kdj\x15\x03\x00\x00K\x03j\x16\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x19\x03\x00\x00K\x01j\x1a\x03\x00\x00j\xcc\x04\x00\x00j\x1c\x03\x00\x00K\x00j\x1d\x03\x00\x00j\xcd\x04\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j!\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j"\x03\x00\x00}\x94(j$\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j%\x03\x00\x00G?\xc3333333uj&\x03\x00\x00j\xd1\x04\x00\x00j(\x03\x00\x00j\xd2\x04\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06CGAGCT\x94\x8c\x12upstream2_mismatch\x94K\x01uuu\x8c\x14miscellaneous_plates\x94}\x94(\x8c\x1520250716_initial_pool\x94}\x94(\x8c\x04date\x94j\xe6\x04\x00\x00C\x04\x07\xe9\x07\x10\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c!flu-seqneut-2025_library_designed\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c5data/miscellaneous_plates/2025-07-16_initial_pool.csv\x94\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06GCTACA\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x1620250723_balanced_pool\x94}\x94(\x8c\x04date\x94j\xe6\x04\x00\x00C\x04\x07\xe9\x07\x17\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c!flu-seqneut-2025_library_designed\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c8data/miscellaneous_plates/2025-07-23_balanced_repool.csv\x94\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06GCTACA\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c(20250723_H3_and_partial_H1_balanced_pool\x94}\x94(\x8c\x04date\x94j\xe6\x04\x00\x00C\x04\x07\xe9\x07\x17\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c!flu-seqneut-2025_library_designed\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8cJdata/miscellaneous_plates/2025-07-23_H3_and_partial_H1_balanced_repool.csv\x94\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06GCTACA\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x1620250807_balanced_pool\x94}\x94(\x8c\x04date\x94j\xe6\x04\x00\x00C\x04\x07\xe9\x08\x07\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c!flu-seqneut-2025_library_designed\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c8data/miscellaneous_plates/2025-08-07_balanced_repool.csv\x94\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06GCTACA\x94\x8c\x12upstream2_mismatch\x94K\x01uuuu\x8c\x04rule\x94\x8c\rprocess_plate\x94\x8c\x0fbench_iteration\x94N\x8c\tscriptdir\x94\x8c`/fh/fast/bloom_j/computational_notebooks/jbloom/2025/flu-seqneut-2025/seqneut-pipeline/notebooks\x94ub.');del script;from snakemake.logging import logger;from snakemake.script import snakemake;import os; os.chdir(r'/fh/fast/bloom_j/computational_notebooks/jbloom/2025/flu-seqneut-2025');
######## snakemake preamble end #########

Process plate counts to get fraction infectivities and fit curves¶

This notebook is designed to be run using snakemake, and analyzes a plate of sequencing-based neutralization assays.

The plots generated by this notebook are interactive, so you can mouseover points for details, use the mouse-scroll to zoom and pan, and use interactive dropdowns at the bottom of the plots.

Setup¶

Import Python modules:

In [2]:
import pickle
import sys
import warnings

import altair as alt

import matplotlib.pyplot as plt
import matplotlib.style

import neutcurve
from neutcurve.colorschemes import CBPALETTE, CBMARKERS

import numpy

import pandas as pd

import ruamel.yaml as yaml

_ = alt.data_transformers.disable_max_rows()

# avoid clutter w RuntimeWarning during curve fitting
warnings.filterwarnings("ignore", category=RuntimeWarning)

# faster plotting of neut curves
matplotlib.style.use("fast")

Get the variables passed by snakemake:

In [3]:
count_csvs = snakemake.input.count_csvs
fate_csvs = snakemake.input.fate_csvs
notebook_funcs = snakemake.input.notebook_funcs
qc_drops_yaml = snakemake.output.qc_drops
frac_infectivity_csv = snakemake.output.frac_infectivity_csv
fits_csv = snakemake.output.fits_csv
fits_pickle = snakemake.output.fits_pickle
viral_barcodes = snakemake.params.viral_barcodes
neut_standard_barcodes = snakemake.params.neut_standard_barcodes
samples = snakemake.params.samples
plate = snakemake.wildcards.plate
plate_params = snakemake.params.plate_params
curve_display_method = snakemake.params.curve_display_method

# get thresholds turning lists into tuples as needed
manual_drops = {
    filter_type: [tuple(w) if isinstance(w, list) else w for w in filter_drops]
    for (filter_type, filter_drops) in plate_params["manual_drops"].items()
}
group = plate_params["group"]
qc_thresholds = plate_params["qc_thresholds"]
curvefit_params = plate_params["curvefit_params"]
curvefit_qc = plate_params["curvefit_qc"]
curvefit_qc["barcode_serum_replicates_ignore_curvefit_qc"] = [
    tuple(w) for w in curvefit_qc["barcode_serum_replicates_ignore_curvefit_qc"]
]

print(f"Processing {plate=}")

samples_df = pd.DataFrame(plate_params["samples"])
print(f"\nPlate has {len(samples)} samples (wells)")
assert all(
    (len(samples_df) == samples_df[c].nunique())
    for c in ["well", "sample", "sample_noplate"]
)
assert len(samples_df) == len(
    samples_df.groupby(["serum_replicate", "dilution_factor"])
)
assert len(samples) == len(count_csvs) == len(fate_csvs) == len(samples_df)

for d, key, title in [
    (manual_drops, "manual_drops", "Data manually specified to drop:"),
    (qc_thresholds, "qc_thresholds", "QC thresholds applied to data:"),
    (curvefit_params, "curvefit_params", "Curve-fitting parameters:"),
    (curvefit_qc, "curvefit_qc", "Curve-fitting QC:"),
]:
    print(f"\n{title}")
    yaml.YAML(typ="rt").dump({key: d}, stream=sys.stdout)
Processing plate='plate12_EPIHK'

Plate has 80 samples (wells)

Data manually specified to drop:
manual_drops: {}
QC thresholds applied to data:
qc_thresholds:
  avg_barcode_counts_per_well: 500
  min_neut_standard_frac_per_well: 0.005
  no_serum_per_viral_barcode_filters:
    min_frac: 0.0001
    max_fold_change: 4
    max_wells: 2
  per_neut_standard_barcode_filters:
    min_frac: 0.005
    max_fold_change: 4
    max_wells: 2
  min_neut_standard_count_per_well: 1000
  min_no_serum_count_per_viral_barcode_well: 100
  max_frac_infectivity_per_viral_barcode_well: 3
  min_dilutions_per_barcode_serum_replicate: 6
Curve-fitting parameters:
curvefit_params:
  frac_infectivity_ceiling: 1
  fixtop:
  - 0.6
  - 1
  fixbottom: 0
  fixslope:
  - 0.8
  - 10
Curve-fitting QC:
curvefit_qc:
  max_frac_infectivity_at_least: 0.0
  goodness_of_fit:
    min_R2: 0.5
    max_RMSD: 0.15
  serum_replicates_ignore_curvefit_qc: []
  barcode_serum_replicates_ignore_curvefit_qc: []

Load the notebook functions:

In [4]:
print(f"Loading {notebook_funcs=}")
%run {notebook_funcs}
Loading notebook_funcs='/home/jbloom/.cache/snakemake/snakemake/source-cache/runtime-cache/tmpfro_n8p6/file/fh/fast/bloom_j/computational_notebooks/jbloom/2025/flu-seqneut-2025/seqneut-pipeline/notebook_funcs.py'

Set up dictionary to keep track of wells, barcodes, well-barcodes, and serum-replicates that are dropped:

In [5]:
qc_drops = {
    "wells": {},
    "barcodes": {},
    "barcode_wells": {},
    "barcode_serum_replicates": {},
    "serum_replicates": {},
}

assert set(manual_drops).issubset(
    qc_drops
), f"{manual_drops.keys()=}, {qc_drops.keys()}"

Statistics on barcode-parsing for each sample¶

Make interactive chart of the "fates" of the sequencing reads parsed for each sample on the plate.

If most sequencing reads are not "valid barcodes", this could potentially indicate some problem in the sequencing or barcode set you are parsing.

Potential fates are:

  • valid barcode: barcode that matches a known virus or neutralization standard, we hope most reads are this.
  • invalid barcode: a barcode with proper flanking sequences, but does not match a known virus or neutralization standard. If you have a lot of reads of this type, it is probably a good idea to look at the invalid barcode CSVs (in the ./results/barcode_invalid/ subdirectory created by the pipeline) to see what these invalid barcodes are.
  • unparseable barcode: could not parse a barcode from this read as there was not a sequence of the correct length with the appropriate flanking sequence.
  • invalid outer flank: if using an outer upstream or downstream region (upstream2 or downstream2 for the illuminabarcodeparser), reads that are otherwise valid except for this outer flank. Typically you would be using upstream2 if you have a plate index embedded in your primer, and reads with this classification correspond to a different index than the one for this plate.
  • low quality barcode: low-quality or N nucleotides in barcode, could indicate problem with sequencing.
  • failed chastity filter: reads that failed the Illumina chastity filter, if these are reported in the FASTQ (they may not be).

Also, if the number of reads per sample is very uneven, that could indicate that you did not do a good job of balancing the different samples in the Illumina sequencing.

In [6]:
fates = (
    pd.concat([pd.read_csv(f).assign(sample=s) for f, s in zip(fate_csvs, samples)])
    .merge(samples_df, validate="many_to_one", on="sample")
    .assign(
        fate_counts=lambda x: x.groupby("fate")["count"].transform("sum"),
        sample_well=lambda x: x["sample_noplate"] + " (" + x["well"] + ")",
    )
    .query("fate_counts > 0")[  # only keep fates with at least one count
        ["fate", "count", "well", "serum_replicate", "sample_well", "dilution_factor"]
    ]
)

assert len(fates) == len(fates.drop_duplicates())

serum_replicates = sorted(fates["serum_replicate"].unique())
sample_wells = list(
    fates.sort_values(["serum_replicate", "dilution_factor"])["sample_well"]
)


serum_selection = alt.selection_point(
    fields=["serum_replicate"],
    bind=alt.binding_select(
        options=[None] + serum_replicates,
        labels=["all"] + serum_replicates,
        name="serum",
    ),
)

fates_chart = (
    alt.Chart(fates)
    .add_params(serum_selection)
    .transform_filter(serum_selection)
    .encode(
        alt.X("count", scale=alt.Scale(nice=False, padding=3)),
        alt.Y(
            "sample_well",
            title=None,
            sort=sample_wells,
        ),
        alt.Color("fate", sort=sorted(fates["fate"].unique(), reverse=True)),
        alt.Order("fate", sort="descending"),
        tooltip=fates.columns.tolist(),
    )
    .mark_bar(height={"band": 0.85})
    .properties(
        height=alt.Step(10),
        width=200,
        title=f"Barcode parsing for {plate}",
    )
    .configure_axis(grid=False)
)

fates_chart
Out[6]:

Read barcode counts and apply manually specified drops¶

Read the counts per barcode:

In [7]:
# get barcode counts
counts = (
    pd.concat([pd.read_csv(c).assign(sample=s) for c, s in zip(count_csvs, samples)])
    .merge(samples_df, validate="many_to_one", on="sample")
    .drop(columns=["replicate", "plate", "fastq"])
    .assign(sample_well=lambda x: x["sample_noplate"] + " (" + x["well"] + ")")
)

# classify barcodes as viral or neut standard
barcode_class = pd.concat(
    [
        pd.DataFrame(viral_barcodes).assign(neut_standard=False),
        pd.DataFrame(neut_standard_barcodes).assign(neut_standard=True, strain=pd.NA),
    ],
    ignore_index=True,
)

# merge counts and classification of barcodes
assert set(counts["barcode"]) == set(barcode_class["barcode"])
counts = counts.merge(barcode_class, on="barcode", validate="many_to_one")
assert set(sample_wells) == set(counts["sample_well"])
assert set(serum_replicates) == set(counts["serum_replicate"])

Apply any manually specified data drops:

In [8]:
for filter_type, filter_drops in manual_drops.items():
    print(f"\nDropping {len(filter_drops)} {filter_type} specified in manual_drops")
    assert filter_type in qc_drops
    qc_drops[filter_type].update(
        {w: "manual_drop" for w in filter_drops if not isinstance(w, list)}
    )
    if filter_type == "barcode_wells":
        counts = counts[
            ~counts.assign(
                barcode_well=lambda x: x.apply(
                    lambda r: (r["barcode"], r["well"]), axis=1
                )
            )["barcode_well"].isin(qc_drops[filter_type])
        ]
    elif filter_type == "barcode_serum_replicates":
        counts = counts[
            ~counts.assign(
                barcode_serum_replicate=lambda x: x.apply(
                    lambda r: (r["barcode"], r["serum_replicate"]), axis=1
                )
            )["barcode_serum_replicate"].isin(qc_drops[filter_type])
        ]
    elif filter_type == "wells":
        counts = counts[~counts["well"].isin(qc_drops[filter_type])]
    elif filter_type == "barcodes":
        counts = counts[~counts["barcode"].isin(qc_drops[filter_type])]
    elif filter_type == "serum_replicates":
        counts = counts[~counts["serum_replicate"].isin(qc_drops[filter_type])]
    elif filter_type == "barcode_serum_replicates":
        counts = counts[~counts["barcode_serum_replicate"].isin(qc_drops[filter_type])]
    else:
        assert filter_type in set(counts.columns)
        counts = counts[~counts[filter_type].isin(qc_drops[filter_type])]

Average counts per barcode in each well¶

Plot average counts per barcode. If a sample has inadequate barcode counts, it may not have good enough statistics for accurate analysis, and a QC-threshold is applied:

In [9]:
avg_barcode_counts = (
    counts.groupby(
        ["well", "serum_replicate", "sample_well"],
        dropna=False,
        as_index=False,
    )
    .aggregate(avg_count=pd.NamedAgg("count", "mean"))
    .assign(
        fails_qc=lambda x: (
            x["avg_count"] < qc_thresholds["avg_barcode_counts_per_well"]
        ),
    )
)

avg_barcode_counts_chart = (
    alt.Chart(avg_barcode_counts)
    .add_params(serum_selection)
    .transform_filter(serum_selection)
    .encode(
        alt.X(
            "avg_count",
            title="average barcode counts per well",
            scale=alt.Scale(nice=False, padding=3),
        ),
        alt.Y("sample_well", sort=sample_wells),
        alt.Color(
            "fails_qc",
            title=f"fails {qc_thresholds['avg_barcode_counts_per_well']=}",
            legend=alt.Legend(titleLimit=500),
        ),
        tooltip=[
            alt.Tooltip(c, format=".3g") if avg_barcode_counts[c].dtype == float else c
            for c in avg_barcode_counts.columns
        ],
    )
    .mark_bar(height={"band": 0.85})
    .properties(
        height=alt.Step(10),
        width=250,
        title=f"Average barcode counts per well for {plate}",
    )
    .configure_axis(grid=False)
)

display(avg_barcode_counts_chart)

# drop wells failing QC
avg_barcode_counts_per_well_drops = list(avg_barcode_counts.query("fails_qc")["well"])
print(
    f"\nDropping {len(avg_barcode_counts_per_well_drops)} wells for failing "
    f"{qc_thresholds['avg_barcode_counts_per_well']=}: "
    + str(avg_barcode_counts_per_well_drops)
)
qc_drops["wells"].update(
    {w: "avg_barcode_counts_per_well" for w in avg_barcode_counts_per_well_drops}
)
counts = counts[~counts["well"].isin(qc_drops["wells"])]
Dropping 0 wells for failing qc_thresholds['avg_barcode_counts_per_well']=500: []

Fraction of counts from neutralization standard¶

Determine the fraction of counts from the neutralization standard in each sample, and make sure this fraction passess the QC threshold.

In [10]:
neut_standard_fracs = (
    counts.assign(
        neut_standard_count=lambda x: x["count"] * x["neut_standard"].astype(int)
    )
    .groupby(
        ["well", "serum_replicate", "sample_well"],
        dropna=False,
        as_index=False,
    )
    .aggregate(
        total_count=pd.NamedAgg("count", "sum"),
        neut_standard_count=pd.NamedAgg("neut_standard_count", "sum"),
    )
    .assign(
        neut_standard_frac=lambda x: x["neut_standard_count"] / x["total_count"],
        fails_qc=lambda x: (
            x["neut_standard_frac"] < qc_thresholds["min_neut_standard_frac_per_well"]
        ),
    )
)

neut_standard_fracs_chart = (
    alt.Chart(neut_standard_fracs)
    .add_params(serum_selection)
    .transform_filter(serum_selection)
    .encode(
        alt.X(
            "neut_standard_frac",
            title="frac counts from neutralization standard per well",
            scale=alt.Scale(nice=False, padding=3),
        ),
        alt.Y("sample_well", sort=sample_wells),
        alt.Color(
            "fails_qc",
            title=f"fails {qc_thresholds['min_neut_standard_frac_per_well']=}",
            legend=alt.Legend(titleLimit=500),
        ),
        tooltip=[
            alt.Tooltip(c, format=".3g") if neut_standard_fracs[c].dtype == float else c
            for c in neut_standard_fracs.columns
        ],
    )
    .mark_bar(height={"band": 0.85})
    .properties(
        height=alt.Step(10),
        width=250,
        title=f"Neutralization-standard fracs per well for {plate}",
    )
    .configure_axis(grid=False)
    .configure_legend(titleLimit=1000)
)

display(neut_standard_fracs_chart)
In [11]:
# drop wells failing QC
min_neut_standard_frac_per_well_drops = list(
    neut_standard_fracs.query("fails_qc")["well"]
)
print(
    f"\nDropping {len(min_neut_standard_frac_per_well_drops)} wells for failing "
    f"{qc_thresholds['min_neut_standard_frac_per_well']=}: "
    + str(min_neut_standard_frac_per_well_drops)
)
qc_drops["wells"].update(
    {
        w: "min_neut_standard_frac_per_well"
        for w in min_neut_standard_frac_per_well_drops
    }
)
counts = counts[~counts["well"].isin(qc_drops["wells"])]
Dropping 0 wells for failing qc_thresholds['min_neut_standard_frac_per_well']=0.005: []

Consistency and minimum fractions for barcodes¶

We examine the fraction of counts attributable to each barcode. We do this splitting the data two ways:

  1. Looking at all viral (but not neut-standard) barcodes only for the no-serum samples (wells).

  2. Looking at just the neut-standard barcodes for all samples (wells).

The reasons is that if the experiment is set up perfectly, these fractions should be the same across all samples for each barcode. (We do not expect viral barcodes to have consistent fractions across no-serum samples as they will be neutralized differently depending on strain).

We plot these fractions in interactive plots (you can mouseover points and zoom) so you can identify barcodes that fail the expected consistency QC thresholds.

We also make sure the barcodes meet specified QC minimum thresholds for all samples, and flag any that do not.

In [12]:
barcode_selection = alt.selection_point(fields=["barcode"], on="mouseover", empty=False)

# look at all samples for neut standard barcodes, or no-serum samples for all barcodes
for is_neut_standard, df in counts.groupby("neut_standard"):
    if is_neut_standard:
        print(
            f"\n\n{'=' * 89}\nAnalyzing neut-standard barcodes from all samples (wells)"
        )
        qc_name = "per_neut_standard_barcode_filters"
    else:
        print(f"\n\n{'=' * 89}\nAnalyzing all barcodes from no-serum samples (wells)")
        qc_name = "no_serum_per_viral_barcode_filters"
        df = df.query("serum == 'none'")

    df = df.assign(
        sample_counts=lambda x: x.groupby("sample")["count"].transform("sum"),
        count_frac=lambda x: x["count"] / x["sample_counts"],
        median_count_frac=lambda x: x.groupby("barcode")["count_frac"].transform(
            "median"
        ),
        fold_change_from_median=lambda x: numpy.where(
            x["count_frac"] > x["median_count_frac"],
            x["count_frac"] / x["median_count_frac"],
            x["median_count_frac"] / x["count_frac"],
        ),
    )[
        [
            "barcode",
            "count",
            "sample_well",
            "count_frac",
            "fold_change_from_median",
        ]
        + ([] if is_neut_standard else ["strain"])
    ]

    # barcode fails QC if fails in sufficient wells
    qc = qc_thresholds[qc_name]
    print(f"Apply QC {qc_name}: {qc}\n")
    fails_qc = (
        df.assign(
            fails_qc=lambda x: ~(
                (x["count_frac"] >= qc["min_frac"])
                & (x["fold_change_from_median"] <= qc["max_fold_change"])
            ),
        )
        .groupby("barcode", as_index=False)
        .aggregate(n_wells_fail_qc=pd.NamedAgg("fails_qc", "sum"))
        .assign(fails_qc=lambda x: x["n_wells_fail_qc"] >= qc["max_wells"])[
            ["barcode", "fails_qc"]
        ]
    )
    df = df.merge(fails_qc, on="barcode", validate="many_to_one")

    # make chart
    evenness_chart = (
        alt.Chart(df)
        .add_params(barcode_selection)
        .encode(
            alt.X(
                "count_frac",
                title=(
                    "barcode's fraction of neut standard counts"
                    if is_neut_standard
                    else "barcode's fraction of non-neut standard counts"
                ),
                scale=alt.Scale(nice=False, padding=5),
            ),
            alt.Y("sample_well", sort=sample_wells),
            alt.Fill(
                "fails_qc",
                title=f"fails {qc_name}",
                legend=alt.Legend(titleLimit=500),
            ),
            strokeWidth=alt.condition(barcode_selection, alt.value(2), alt.value(0)),
            size=alt.condition(barcode_selection, alt.value(60), alt.value(35)),
            tooltip=[
                alt.Tooltip(c, format=".2g") if df[c].dtype == float else c
                for c in df.columns
            ],
        )
        .mark_circle(fillOpacity=0.45, stroke="black", strokeOpacity=1)
        .properties(
            height=alt.Step(10),
            width=300,
            title=alt.TitleParams(
                (
                    f"{plate} all samples, neut-standard barcodes"
                    if is_neut_standard
                    else f"{plate} no-serum samples, all barcodes"
                ),
                subtitle="x-axis is zoomable (use mouse scroll/pan)",
            ),
        )
        .configure_axis(grid=False)
        .configure_legend(titleLimit=1000)
        .interactive()
    )

    display(evenness_chart)

    # drop barcodes failing QC
    barcode_drops = list(fails_qc.query("fails_qc")["barcode"])
    print(
        f"\nDropping {len(barcode_drops)} barcodes for failing {qc=}: {barcode_drops}"
    )
    qc_drops["barcodes"].update(
        {bc: "min_neut_standard_frac_per_well" for bc in barcode_drops}
    )
    counts = counts[~counts["barcode"].isin(qc_drops["barcodes"])]

=========================================================================================
Analyzing all barcodes from no-serum samples (wells)
Apply QC no_serum_per_viral_barcode_filters: {'min_frac': 0.0001, 'max_fold_change': 4, 'max_wells': 2}

Dropping 0 barcodes for failing qc={'min_frac': 0.0001, 'max_fold_change': 4, 'max_wells': 2}: []


=========================================================================================
Analyzing neut-standard barcodes from all samples (wells)
Apply QC per_neut_standard_barcode_filters: {'min_frac': 0.005, 'max_fold_change': 4, 'max_wells': 2}

Dropping 0 barcodes for failing qc={'min_frac': 0.005, 'max_fold_change': 4, 'max_wells': 2}: []

Compute fraction infectivity¶

The fraction infectivity for viral barcode $v_b$ in sample $s$ is computed as: $$ F_{v_b,s} = \frac{c_{v_b,s} / \left(\sum_{n_b} c_{n_b,s}\right)}{{\rm median}_{s_0}\left[ c_{v_b,s_0} / \left(\sum_{n_b} c_{n_b,s_0}\right)\right]} $$ where

  • $c_{v_b,s}$ is the counts of viral barcode $v_b$ in sample $s$.
  • $\sum_{n_b} c_{n_b,s}$ is the sum of the counts for all neutralization standard barcodes $n_b$ for sample $s$.
  • $c_{v_b,s_0}$ is the counts of viral barcode $v_b$ in no-serum sample $s_0$.
  • $\sum_{n_b} c_{n_b,s_0}$ is the sum of the counts for all neutralization standard barcodes $n_b$ for no-serum sample $s_0$.
  • ${\rm median}_{s_0}\left[ c_{v_b,s_0} / \left(\sum_{n_b} c_{n_b,s_0}\right)\right]$ is the median taken across all no-serum samples of the counts of viral barcode $v_b$ versus the total counts for all neutralization standard barcodes.

First, compute the total neutralization-standard counts for each sample (well). Plot these, and drop any wells that do not meet the QC threshold.

In [13]:
neut_standard_counts = (
    counts.query("neut_standard")
    .groupby(
        ["well", "serum_replicate", "sample_well", "dilution_factor"],
        dropna=False,
        as_index=False,
    )
    .aggregate(neut_standard_count=pd.NamedAgg("count", "sum"))
    .assign(
        fails_qc=lambda x: (
            x["neut_standard_count"] < qc_thresholds["min_neut_standard_count_per_well"]
        ),
    )
)

neut_standard_counts_chart = (
    alt.Chart(neut_standard_counts)
    .add_params(serum_selection)
    .transform_filter(serum_selection)
    .encode(
        alt.X(
            "neut_standard_count",
            title="counts from neutralization standard",
            scale=alt.Scale(nice=False, padding=3),
        ),
        alt.Y("sample_well", sort=sample_wells),
        alt.Color(
            "fails_qc",
            title=f"fails {qc_thresholds['min_neut_standard_count_per_well']=}",
            legend=alt.Legend(titleLimit=500),
        ),
        tooltip=[
            (
                alt.Tooltip(c, format=".3g")
                if neut_standard_counts[c].dtype == float
                else c
            )
            for c in neut_standard_counts.columns
        ],
    )
    .mark_bar(height={"band": 0.85})
    .properties(
        height=alt.Step(10),
        width=250,
        title=f"Neutralization-standard counts for {plate}",
    )
    .configure_axis(grid=False)
    .configure_legend(titleLimit=1000)
)

display(neut_standard_counts_chart)
In [14]:
# drop wells failing QC
min_neut_standard_count_per_well_drops = list(
    neut_standard_counts.query("fails_qc")["well"]
)
print(
    f"\nDropping {len(min_neut_standard_count_per_well_drops)} wells for failing "
    f"{qc_thresholds['min_neut_standard_count_per_well']=}: "
    + str(min_neut_standard_count_per_well_drops)
)
qc_drops["wells"].update(
    {
        w: "min_neut_standard_count_per_well"
        for w in min_neut_standard_count_per_well_drops
    }
)
neut_standard_counts = neut_standard_counts[
    ~neut_standard_counts["well"].isin(qc_drops["wells"])
]
counts = counts[~counts["well"].isin(qc_drops["wells"])]
Dropping 0 wells for failing qc_thresholds['min_neut_standard_count_per_well']=1000: []

Compute and plot the no-serum sample viral barcode counts and check if they pass the QC filters.

In [15]:
no_serum_counts = (
    counts.query("serum == 'none'")
    .query("not neut_standard")
    .merge(neut_standard_counts, validate="many_to_one")[
        ["barcode", "strain", "well", "sample_well", "count", "neut_standard_count"]
    ]
    .assign(
        fails_qc=lambda x: (
            x["count"] <= qc_thresholds["min_no_serum_count_per_viral_barcode_well"]
        ),
    )
)

strains = sorted(no_serum_counts["strain"].unique())
strain_selection_dropdown = alt.selection_point(
    fields=["strain"],
    bind=alt.binding_select(
        options=[None] + strains,
        labels=["all"] + strains,
        name="virus strain",
    ),
)

# make chart
no_serum_counts_plot_df = no_serum_counts.drop(columns=["well", "neut_standard_count"])
no_serum_counts_chart = (
    alt.Chart(no_serum_counts_plot_df)
    .add_params(barcode_selection, strain_selection_dropdown)
    .transform_filter(strain_selection_dropdown)
    .encode(
        alt.X(
            "count", title="viral barcode count", scale=alt.Scale(nice=False, padding=5)
        ),
        alt.Y("sample_well", sort=sample_wells),
        alt.Fill(
            "fails_qc",
            title=f"fails {qc_thresholds['min_no_serum_count_per_viral_barcode_well']=}",
            legend=alt.Legend(titleLimit=500),
        ),
        strokeWidth=alt.condition(barcode_selection, alt.value(2), alt.value(0)),
        size=alt.condition(barcode_selection, alt.value(60), alt.value(35)),
        tooltip=no_serum_counts_plot_df.columns.tolist(),
    )
    .mark_circle(fillOpacity=0.6, stroke="black", strokeOpacity=1)
    .properties(
        height=alt.Step(10),
        width=400,
        title=f"{plate} viral barcode counts in no-serum samples",
    )
    .configure_axis(grid=False)
    .configure_legend(titleLimit=1000)
    .interactive()
)

display(no_serum_counts_chart)
In [16]:
# drop barcode / wells failing QC
min_no_serum_count_per_viral_barcode_well_drops = list(
    no_serum_counts.query("fails_qc")[["barcode", "well"]].itertuples(
        index=False, name=None
    )
)
print(
    f"\nDropping {len(min_no_serum_count_per_viral_barcode_well_drops)} barcode-wells for failing "
    f"{qc_thresholds['min_no_serum_count_per_viral_barcode_well']=}: "
    + str(min_no_serum_count_per_viral_barcode_well_drops)
)
qc_drops["barcode_wells"].update(
    {
        w: "min_no_serum_count_per_viral_barcode_well"
        for w in min_no_serum_count_per_viral_barcode_well_drops
    }
)
no_serum_counts = no_serum_counts[
    ~no_serum_counts.assign(
        barcode_well=lambda x: x.apply(lambda r: (r["barcode"], r["well"]), axis=1)
    )["barcode_well"].isin(qc_drops["barcode_wells"])
]
counts = counts[
    ~counts.assign(
        barcode_well=lambda x: x.apply(lambda r: (r["barcode"], r["well"]), axis=1)
    )["barcode_well"].isin(qc_drops["barcode_wells"])
]
Dropping 1 barcode-wells for failing qc_thresholds['min_no_serum_count_per_viral_barcode_well']=100: [('CTCTTACGCTCCTACG', 'D12')]

Compute and plot the median ratio of viral barcode count to neut standard counts across no-serum samples. If library composition is equal, all of these values should be similar:

In [17]:
median_no_serum_ratio = (
    no_serum_counts.assign(ratio=lambda x: x["count"] / x["neut_standard_count"])
    .groupby(["barcode", "strain"], as_index=False)
    .aggregate(median_no_serum_ratio=pd.NamedAgg("ratio", "median"))
)

strain_selection = alt.selection_point(fields=["strain"], on="mouseover", empty=False)

median_no_serum_ratio_chart = (
    alt.Chart(median_no_serum_ratio)
    .add_params(strain_selection)
    .encode(
        alt.X(
            "median_no_serum_ratio",
            title="median ratio of counts",
            scale=alt.Scale(nice=False, padding=5),
        ),
        alt.Y(
            "barcode",
            sort=alt.SortField("median_no_serum_ratio", order="descending"),
            axis=alt.Axis(labelFontSize=5),
        ),
        color=alt.condition(strain_selection, alt.value("orange"), alt.value("gray")),
        tooltip=[
            (
                alt.Tooltip(c, format=".3g")
                if median_no_serum_ratio[c].dtype == float
                else c
            )
            for c in median_no_serum_ratio.columns
        ],
    )
    .mark_bar(height={"band": 0.85})
    .properties(
        height=alt.Step(5),
        width=250,
        title=f"{plate} no-serum median ratio viral barcode to neut-standard barcode",
    )
    .configure_axis(grid=False)
    .configure_legend(titleLimit=1000)
)

display(median_no_serum_ratio_chart)

Compute the actual fraction infectivities. We compute both the raw fraction infectivities and the ones with the ceiling applied:

In [18]:
frac_infectivity = (
    counts.query("not neut_standard")
    .query("serum != 'none'")
    .merge(median_no_serum_ratio, validate="many_to_one")
    .merge(neut_standard_counts, validate="many_to_one")
    .assign(
        frac_infectivity_raw=lambda x: (
            (x["count"] / x["neut_standard_count"]) / x["median_no_serum_ratio"]
        ),
        frac_infectivity_ceiling=lambda x: x["frac_infectivity_raw"].clip(
            upper=curvefit_params["frac_infectivity_ceiling"]
        ),
        concentration=lambda x: 1 / x["dilution_factor"],
        plate_barcode=lambda x: x["plate_replicate"] + "-" + x["barcode"],
    )[
        [
            "barcode",
            "plate_barcode",
            "well",
            "strain",
            "serum",
            "serum_replicate",
            "dilution_factor",
            "concentration",
            "frac_infectivity_raw",
            "frac_infectivity_ceiling",
        ]
    ]
)

assert len(
    frac_infectivity.groupby(["serum", "plate_barcode", "dilution_factor"])
) == len(frac_infectivity)
assert frac_infectivity["dilution_factor"].notnull().all()
assert frac_infectivity["frac_infectivity_raw"].notnull().all()
assert frac_infectivity["frac_infectivity_ceiling"].notnull().all()

Plot the fraction infectivities, both the raw values and with the ceiling applied:

In [19]:
frac_infectivity_cols = {
    "frac_infectivity_raw": "raw fraction infectivity",
    "frac_infectivity_ceiling": f"fraction infectivity with ceiling at {curvefit_params['frac_infectivity_ceiling']}",
}

frac_infectivity_chart_df = frac_infectivity.assign(
    fails_qc=lambda x: (
        x["frac_infectivity_raw"]
        > qc_thresholds["max_frac_infectivity_per_viral_barcode_well"]
    ),
)[
    [
        "barcode",
        "strain",
        "well",
        "serum_replicate",
        "dilution_factor",
        "fails_qc",
        *list(frac_infectivity_cols),
    ]
].rename(
    columns=frac_infectivity_cols
)

# some manipulations to shrink data frame plotted by altair below by putting
# them in smaller data frames that are used via transform_lookup
barcode_lookup_df = frac_infectivity[["barcode", "strain"]].drop_duplicates()
assert len(barcode_lookup_df) == barcode_lookup_df["barcode"].nunique()
well_lookup_df = frac_infectivity[
    ["well", "serum_replicate", "dilution_factor"]
].drop_duplicates()
assert len(well_lookup_df) == well_lookup_df["well"].nunique()

frac_infectivity_chart_df = frac_infectivity_chart_df.drop(
    columns=["strain", "serum_replicate", "dilution_factor"]
)
In [20]:
frac_infectivity_chart = (
    alt.Chart(frac_infectivity_chart_df)
    .transform_lookup(
        lookup="barcode",
        from_=alt.LookupData(barcode_lookup_df, key="barcode", fields=["strain"]),
    )
    .transform_lookup(
        lookup="well",
        from_=alt.LookupData(
            well_lookup_df, key="well", fields=["serum_replicate", "dilution_factor"]
        ),
    )
    .transform_fold(
        frac_infectivity_cols.values(), ["ceiling_applied", "frac_infectivity"]
    )
    .add_params(strain_selection_dropdown, barcode_selection)
    .transform_filter(strain_selection_dropdown)
    .encode(
        alt.X(
            "dilution_factor:Q",
            title="dilution factor",
            scale=alt.Scale(nice=False, padding=5, type="log"),
        ),
        alt.Y(
            "frac_infectivity:Q",
            title="fraction infectivity",
            scale=alt.Scale(nice=False, padding=5),
        ),
        alt.Column(
            "ceiling_applied:N",
            sort="descending",
            title=None,
            header=alt.Header(labelFontSize=13, labelFontStyle="bold", labelPadding=2),
        ),
        alt.Row(
            "serum_replicate:N",
            title=None,
            spacing=3,
            header=alt.Header(labelFontSize=13, labelFontStyle="bold"),
        ),
        alt.Detail("barcode"),
        alt.Shape(
            "fails_qc",
            title=f"fails {qc_thresholds['max_frac_infectivity_per_viral_barcode_well']=}",
            legend=alt.Legend(titleLimit=500, orient="bottom"),
        ),
        color=alt.condition(
            barcode_selection, alt.value("black"), alt.value("MediumBlue")
        ),
        strokeWidth=alt.condition(barcode_selection, alt.value(3), alt.value(1)),
        opacity=alt.condition(barcode_selection, alt.value(1), alt.value(0.25)),
        tooltip=[
            (
                alt.Tooltip(c, format=".3g")
                if frac_infectivity_chart_df[c].dtype == float
                else c
            )
            for c in frac_infectivity_chart_df.columns
        ]
        + [
            alt.Tooltip("strain:N"),
            alt.Tooltip("serum_replicate:N"),
            alt.Tooltip("dilution_factor:Q"),
        ],
    )
    .mark_line(point=True)
    .properties(
        height=150,
        width=250,
        title=f"Fraction infectivities for {plate}",
    )
    .interactive(bind_x=False)
    .configure_axis(grid=False)
    .configure_legend(titleLimit=1000)
    .configure_point(size=50)
    .resolve_scale(x="independent", y="independent")
)

display(frac_infectivity_chart)
In [21]:
# drop barcode / wells failing QC
max_frac_infectivity_per_viral_barcode_well_drops = list(
    frac_infectivity_chart_df.query("fails_qc")[["barcode", "well"]]
    .drop_duplicates()
    .itertuples(index=False, name=None)
)
print(
    f"\nDropping {len(max_frac_infectivity_per_viral_barcode_well_drops)} barcode-wells for failing "
    f"{qc_thresholds['max_frac_infectivity_per_viral_barcode_well']=}: "
    + str(max_frac_infectivity_per_viral_barcode_well_drops)
)
qc_drops["barcode_wells"].update(
    {
        w: "max_frac_infectivity_per_viral_barcode_well"
        for w in max_frac_infectivity_per_viral_barcode_well_drops
    }
)
frac_infectivity = frac_infectivity[
    ~frac_infectivity.assign(
        barcode_well=lambda x: x.apply(lambda r: (r["barcode"], r["well"]), axis=1)
    )["barcode_well"].isin(qc_drops["barcode_wells"])
]
Dropping 10 barcode-wells for failing qc_thresholds['max_frac_infectivity_per_viral_barcode_well']=3: [('ATGGTTTTACGTCCAT', 'H4'), ('CGTTAACGGCCTATCC', 'B7'), ('AGTCCTATCCTCAAAT', 'C7'), ('ATAACTGAGGGCATTG', 'F7'), ('AGTCCTATCCTCAAAT', 'D8'), ('TCTCAGCTCTTAGCCG', 'G8'), ('CACCAATCTTCGAACT', 'H8'), ('AGTCCTATCCTCAAAT', 'H10'), ('CACCAATCTTCGAACT', 'E11'), ('AGTCCTATCCTCAAAT', 'E11')]

Check how many dilutions we have per barcode / serum-replicate:

In [22]:
n_dilutions = (
    frac_infectivity.groupby(["serum_replicate", "strain", "barcode"], as_index=False)
    .aggregate(**{"number of dilutions": pd.NamedAgg("dilution_factor", "nunique")})
    .assign(
        fails_qc=lambda x: (
            x["number of dilutions"]
            < qc_thresholds["min_dilutions_per_barcode_serum_replicate"]
        ),
    )
)

n_dilutions_chart = (
    alt.Chart(n_dilutions)
    .add_params(barcode_selection)
    .encode(
        alt.X("number of dilutions", scale=alt.Scale(nice=False, padding=4)),
        alt.Y("strain", title=None),
        alt.Column(
            "serum_replicate",
            title=None,
            header=alt.Header(labelFontSize=12, labelFontStyle="bold", labelPadding=0),
        ),
        alt.Fill(
            "fails_qc",
            title=f"fails {qc_thresholds['min_dilutions_per_barcode_serum_replicate']=}",
            legend=alt.Legend(titleLimit=500, orient="bottom"),
        ),
        strokeWidth=alt.condition(barcode_selection, alt.value(2), alt.value(0)),
        size=alt.condition(barcode_selection, alt.value(55), alt.value(35)),
        tooltip=[
            alt.Tooltip(c, format=".3g") if n_dilutions[c].dtype == float else c
            for c in n_dilutions.columns
        ],
    )
    .mark_circle(stroke="black", strokeOpacity=1, fillOpacity=0.45)
    .properties(
        height=alt.Step(10),
        width=120,
        title=alt.TitleParams(
            "number of dilutions for each barcode for each serum-replicate", dy=-2
        ),
    )
)

display(n_dilutions_chart)

# drop barcode / serum-replicates failing QC
min_dilutions_per_barcode_serum_replicate_drops = list(
    n_dilutions.query("fails_qc")[["barcode", "serum_replicate"]].itertuples(
        index=False, name=None
    )
)
print(
    f"\nDropping {len(min_dilutions_per_barcode_serum_replicate_drops)} barcode/serum-replicates for failing "
    f"{qc_thresholds['min_dilutions_per_barcode_serum_replicate']=}: "
    + str(min_dilutions_per_barcode_serum_replicate_drops)
)
qc_drops["barcode_serum_replicates"].update(
    {
        w: "min_dilutions_per_barcode_serum_replicate"
        for w in min_dilutions_per_barcode_serum_replicate_drops
    }
)
frac_infectivity = frac_infectivity[
    ~frac_infectivity.assign(
        barcode_serum_replicate=lambda x: x.apply(
            lambda r: (r["barcode"], r["serum_replicate"]), axis=1
        )
    )["barcode_serum_replicate"].isin(qc_drops["barcode_serum_replicates"])
]
Dropping 0 barcode/serum-replicates for failing qc_thresholds['min_dilutions_per_barcode_serum_replicate']=6: []

Fit neutralization curves without applying QC to curves¶

First fit curves to all serum replicates, then we will apply QC on the curve fits. Note that the fitting is done to the fraction infectivities with the ceiling:

In [23]:
fits_noqc = neutcurve.CurveFits(
    frac_infectivity.rename(
        columns={
            "frac_infectivity_ceiling": "fraction infectivity",
            "concentration": "serum concentration",
        }
    ),
    conc_col="serum concentration",
    fracinf_col="fraction infectivity",
    virus_col="strain",
    serum_col="serum_replicate",
    replicate_col="barcode",
    fixtop=curvefit_params["fixtop"],
    fixbottom=curvefit_params["fixbottom"],
    fixslope=curvefit_params["fixslope"],
)

Determine which fits fail the curve fitting QC, and plot them. Note the plot indicates as failing QC any barcode / serum-replicate that fails, even if we are also specified to ignore the QC for that one (so it will not be removed later):

In [24]:
goodness_of_fit = curvefit_qc["goodness_of_fit"]

fit_params_noqc = (
    frac_infectivity.groupby(["serum_replicate", "barcode"], as_index=False)
    .aggregate(max_frac_infectivity=pd.NamedAgg("frac_infectivity_ceiling", "max"))
    .merge(
        fits_noqc.fitParams(average_only=False, no_average=True)[
            ["serum", "virus", "replicate", "r2", "rmsd"]
        ].rename(columns={"serum": "serum_replicate", "replicate": "barcode"}),
        validate="one_to_one",
    )
    .assign(
        fails_max_frac_infectivity_at_least=lambda x: (
            x["max_frac_infectivity"] < curvefit_qc["max_frac_infectivity_at_least"]
        ),
        fails_goodness_of_fit=lambda x: (
            (x["r2"] < goodness_of_fit["min_R2"])
            & (x["rmsd"] > goodness_of_fit["max_RMSD"])
        ),
        fails_qc=lambda x: (
            x["fails_max_frac_infectivity_at_least"] | x["fails_goodness_of_fit"]
        ),
        ignore_qc=lambda x: x.apply(
            lambda r: (
                (
                    r["serum_replicate"]
                    in curvefit_qc["serum_replicates_ignore_curvefit_qc"]
                )
                or (
                    (r["barcode"], r["serum_replicate"])
                    in curvefit_qc["barcode_serum_replicates_ignore_curvefit_qc"]
                )
            ),
            axis=1,
        ),
    )
)
In [25]:
print(f"Plotting barcode / serum-replicates that fail {curvefit_qc=}\n")

fit_params_noqc_base_chart = alt.Chart(fit_params_noqc).add_params(barcode_selection)
fit_params_noqc_chart = []
for prop, col in [
    ("max frac infectivity", "max_frac_infectivity"),
    ("curve fit R2", "r2"),
    ("curve fit RMSD", "rmsd"),
]:
    fit_params_noqc_chart.append(
        fit_params_noqc_base_chart.encode(
            alt.X(col, title=prop, scale=alt.Scale(nice=False, padding=4)),
            alt.Y("virus", title=None),
            alt.Fill("fails_qc"),
            alt.Column(
                "serum_replicate",
                title=None,
                header=alt.Header(
                    labelFontSize=12, labelFontStyle="bold", labelPadding=0
                ),
            ),
            strokeWidth=alt.condition(barcode_selection, alt.value(2), alt.value(0)),
            size=alt.condition(barcode_selection, alt.value(55), alt.value(35)),
            tooltip=[
                alt.Tooltip(c, format=".3g") if fit_params_noqc[c].dtype == float else c
                for c in fit_params_noqc.columns
            ],
        )
        .mark_circle(stroke="black", strokeOpacity=1, fillOpacity=0.55)
        .properties(
            height=alt.Step(10),
            width=90,
            title=alt.TitleParams(f"{prop} for each barcode serum-replicate", dy=-2),
        )
    )

alt.vconcat(*fit_params_noqc_chart)
Plotting barcode / serum-replicates that fail curvefit_qc={'max_frac_infectivity_at_least': 0.0, 'goodness_of_fit': {'min_R2': 0.5, 'max_RMSD': 0.15}, 'serum_replicates_ignore_curvefit_qc': [], 'barcode_serum_replicates_ignore_curvefit_qc': []}

Out[25]:

Now plot curves for all virus vs serum-replicates that have a barcode that fails any of the QC. In these plots, the suffix on the barcode name in the color key indicates if it passed or failed QC:

In [26]:
barcode_serum_replicates_fail_qc = fit_params_noqc.query("fails_qc").reset_index(
    drop=True
)
print(f"Here are barcode / serum-replicates that fail {curvefit_qc=}")
display(barcode_serum_replicates_fail_qc)

if len(barcode_serum_replicates_fail_qc):
    print(
        "\nCurves for virus vs serum-replicates with at least one failed barcode."
        "\nColor key labels indicate if barcodes failed or passed QC."
    )
    plots = {}
    ncol = 6
    for iplot, (serum, virus, failed_barcodes) in enumerate(
        barcode_serum_replicates_fail_qc.groupby(
            ["serum_replicate", "virus"], as_index=False
        )
        .aggregate(barcodes=pd.NamedAgg("barcode", list))
        .itertuples(index=False)
    ):
        passed_barcodes = [
            bc
            for bc in fits_noqc.replicates[serum, virus]
            if (bc not in failed_barcodes) and (bc != "average")
        ]
        curvelist = []
        assert len(CBMARKERS) >= len(failed_barcodes + passed_barcodes)
        assert len(CBPALETTE) >= len(failed_barcodes + passed_barcodes)
        for replicate, marker, color in zip(
            failed_barcodes + passed_barcodes, CBMARKERS, CBPALETTE
        ):
            curvelist.append(
                {
                    "serum": serum,
                    "virus": virus,
                    "replicate": replicate,
                    "label": replicate
                    + ("-fail" if replicate in failed_barcodes else "-pass"),
                    "color": color,
                    "marker": marker,
                }
            )
        plots[iplot // ncol, iplot % ncol] = (f"{serum} vs {virus}", curvelist)

    fig, _ = fits_noqc.plotGrid(
        plots,
        attempt_shared_legend=False,
        legendfontsize=8,
        titlesize=9,
        ticksize=10,
        draw_in_bounds=True,
    )
    display_curve_fig(fig, curve_display_method)
    plt.close(fig)
Here are barcode / serum-replicates that fail curvefit_qc={'max_frac_infectivity_at_least': 0.0, 'goodness_of_fit': {'min_R2': 0.5, 'max_RMSD': 0.15}, 'serum_replicates_ignore_curvefit_qc': [], 'barcode_serum_replicates_ignore_curvefit_qc': []}
serum_replicate barcode max_frac_infectivity virus r2 rmsd fails_max_frac_infectivity_at_least fails_goodness_of_fit fails_qc ignore_qc
0 EPIHK_1 CCCTTTACGGATCTCT 0.684749 A/CoteD'Ivoire/4448/2024_H3N2 4.846544e-01 0.170154 False True True False
1 EPIHK_3 AAAGGCGCGCCTTCAA 1.000000 A/Lisboa/216/2023_H3N2 4.637534e-01 0.189591 False True True False
2 EPIHK_3 AAAGTAGCAGAGGATT 1.000000 A/Darwin/9/2021_H3N2 3.377174e-01 0.218073 False True True False
3 EPIHK_3 AACCACCCCAGAGATG 1.000000 A/Kansas/14/2017_H3N2 4.842764e-01 0.206089 False True True False
4 EPIHK_3 AACTGCGTTCATCGAT 1.000000 A/Oregon/265/2024_H3N2 1.110223e-16 0.167251 False True True False
... ... ... ... ... ... ... ... ... ... ...
136 EPIHK_8 GTAAGCTTCATGGAGT 1.000000 A/Switzerland/860423897313/2023_H3N2 0.000000e+00 0.219358 False True True False
137 EPIHK_8 GTTATTATGACTTCAT 1.000000 A/Darwin/6/2021_H3N2 2.909014e-01 0.183866 False True True False
138 EPIHK_8 TGTGGAGCGCCCTTAC 1.000000 A/Tennessee/99/2024_H3N2 3.839045e-01 0.181435 False True True False
139 EPIHK_8 TTACGAATTTGATTCC 1.000000 A/Punta_Arenas/83659/2024_H3N2 4.777630e-01 0.176926 False True True False
140 EPIHK_8 TTTCACAGAACCTATC 1.000000 A/Badajoz/18680568/2025_H3N2 4.479284e-01 0.230289 False True True False

141 rows × 10 columns

Curves for virus vs serum-replicates with at least one failed barcode.
Color key labels indicate if barcodes failed or passed QC.
figure
In [27]:
# drop barcode / serum-replicates failing QC
for qc_filter in ["max_frac_infectivity_at_least", "goodness_of_fit"]:
    fits_qc_drops = list(
        fit_params_noqc.query(f"fails_{qc_filter} and (not ignore_qc)")[
            ["barcode", "serum_replicate"]
        ].itertuples(index=False, name=None)
    )
    print(
        f"\nDropping {len(fits_qc_drops)} barcode/serum-replicates for failing "
        f"{qc_filter}={curvefit_qc[qc_filter]}: " + str(fits_qc_drops)
    )
    qc_drops["barcode_serum_replicates"].update({w: qc_filter for w in fits_qc_drops})
    frac_infectivity = frac_infectivity[
        ~frac_infectivity.assign(
            barcode_serum_replicate=lambda x: x.apply(
                lambda r: (r["barcode"], r["serum_replicate"]), axis=1
            )
        )["barcode_serum_replicate"].isin(qc_drops["barcode_serum_replicates"])
    ]
    fit_params_noqc = fit_params_noqc[
        ~fit_params_noqc.assign(
            barcode_serum_replicate=lambda x: x.apply(
                lambda r: (r["barcode"], r["serum_replicate"]), axis=1
            )
        )["barcode_serum_replicate"].isin(qc_drops["barcode_serum_replicates"])
    ]
Dropping 0 barcode/serum-replicates for failing max_frac_infectivity_at_least=0.0: []

Dropping 141 barcode/serum-replicates for failing goodness_of_fit={'min_R2': 0.5, 'max_RMSD': 0.15}: [('CCCTTTACGGATCTCT', 'EPIHK_1'), ('AAAGGCGCGCCTTCAA', 'EPIHK_3'), ('AAAGTAGCAGAGGATT', 'EPIHK_3'), ('AACCACCCCAGAGATG', 'EPIHK_3'), ('AACTGCGTTCATCGAT', 'EPIHK_3'), ('AACTTCCGTCGCCTGA', 'EPIHK_3'), ('AAGAAGCTATAGAAGT', 'EPIHK_3'), ('AAGCCCAGCGGGTGAT', 'EPIHK_3'), ('AATGAAACAATCGAAC', 'EPIHK_3'), ('ACTCTGGCTCGCTAAT', 'EPIHK_3'), ('AGACCATCGCACCCAA', 'EPIHK_3'), ('AGACCGCCAGTTTCGT', 'EPIHK_3'), ('AGCCCATGCTGGGGAT', 'EPIHK_3'), ('AGGCCCGTAAGGACTA', 'EPIHK_3'), ('ATAACGTTTGTGCAAA', 'EPIHK_3'), ('ATATAAAAAACTTAGT', 'EPIHK_3'), ('ATGGCCCACGGGCATA', 'EPIHK_3'), ('ATTAGATTATAACGTA', 'EPIHK_3'), ('CAAAATCTACGGCGAC', 'EPIHK_3'), ('CATAAAAGACTGTATA', 'EPIHK_3'), ('CATGGGAATTGCCACT', 'EPIHK_3'), ('CCCCCGCTGTTTAAAA', 'EPIHK_3'), ('CCCTTTACGGATCTCT', 'EPIHK_3'), ('CCGCATTAGCGGGAGG', 'EPIHK_3'), ('CCGCGCACGTTTAGAG', 'EPIHK_3'), ('CGATCTTTACGAAAAA', 'EPIHK_3'), ('CGGGGACAAGATTGTA', 'EPIHK_3'), ('CGTTTTTGGTTCGAGG', 'EPIHK_3'), ('CTAATTTAAGTATCAA', 'EPIHK_3'), ('CTAGCACAGCGTAGGC', 'EPIHK_3'), ('CTATAAACCGTTTGTA', 'EPIHK_3'), ('CTATCTTAATCTACAG', 'EPIHK_3'), ('GAAGTACGCTGAATGA', 'EPIHK_3'), ('GAAGTGCGTATTGAGT', 'EPIHK_3'), ('GAGAGCTGCAGAAGCG', 'EPIHK_3'), ('GAGGGGTAGAGATACG', 'EPIHK_3'), ('GCAAACAGTGTAGTTG', 'EPIHK_3'), ('GTAAGCTTCATGGAGT', 'EPIHK_3'), ('GTAGATACTAGGACCA', 'EPIHK_3'), ('GTCGCCGCTAATCCGA', 'EPIHK_3'), ('GTTGCTCCGACACGCC', 'EPIHK_3'), ('TACCTGCTGCGGAACG', 'EPIHK_3'), ('TACTAGCAATAAAATC', 'EPIHK_3'), ('TATTCCTAACTAGCGA', 'EPIHK_3'), ('TCACGACTCGACTAAC', 'EPIHK_3'), ('TCTCAGCTCTTAGCCG', 'EPIHK_3'), ('TGTGGAGCGCCCTTAC', 'EPIHK_3'), ('TGTTGTAATCTGAATA', 'EPIHK_3'), ('TTGACTCACCGAATAA', 'EPIHK_3'), ('TTGCAATTGAAACATA', 'EPIHK_3'), ('TTTATATCCAACACCA', 'EPIHK_3'), ('TTTCACAGAACCTATC', 'EPIHK_3'), ('AAAGGCGCGCCTTCAA', 'EPIHK_5'), ('AACTGCGTTCATCGAT', 'EPIHK_5'), ('AAGAAGACTTTGTGAT', 'EPIHK_5'), ('AAGGGGCCTCATAATG', 'EPIHK_5'), ('AAGTTAGTAGACCCAC', 'EPIHK_5'), ('ACAAGATTCGGGGGAC', 'EPIHK_5'), ('ACCGAATGAATCATCC', 'EPIHK_5'), ('ACCGTTGTACACACCA', 'EPIHK_5'), ('ACTACGAGGCTACGTA', 'EPIHK_5'), ('AGACCATCGCACCCAA', 'EPIHK_5'), ('AGATCCACCCTATAGT', 'EPIHK_5'), ('AGTGTTGAATAGGCGA', 'EPIHK_5'), ('AGTTTTTATAACTTGC', 'EPIHK_5'), ('ATACACGCATGTGCCA', 'EPIHK_5'), ('ATTAGATTATAACGTA', 'EPIHK_5'), ('CAAAATCTACGGCGAC', 'EPIHK_5'), ('CAATTCGCCGTTCCCC', 'EPIHK_5'), ('CACCGCGCCGAGCACC', 'EPIHK_5'), ('CATAAAAGACTGTATA', 'EPIHK_5'), ('CCCCCGCTGTTTAAAA', 'EPIHK_5'), ('CCCTTTACGGATCTCT', 'EPIHK_5'), ('CCGCATTAGCGGGAGG', 'EPIHK_5'), ('CCTTGATGCATTCCCG', 'EPIHK_5'), ('CGCACTTTACGAGACA', 'EPIHK_5'), ('CGTTCAGCGATAACGG', 'EPIHK_5'), ('CTATAAACCGTTTGTA', 'EPIHK_5'), ('CTGAGCTGCCAATAAG', 'EPIHK_5'), ('CTGTACCTGCAGTTGA', 'EPIHK_5'), ('GAAGTACGCTGAATGA', 'EPIHK_5'), ('GAGAGCTGCAGAAGCG', 'EPIHK_5'), ('GCAGCGTGCCGGTCAT', 'EPIHK_5'), ('GCCATTTACTGAAGGG', 'EPIHK_5'), ('GCCGCTGCGGCGTGTG', 'EPIHK_5'), ('GTAGAACTGCGGCCCC', 'EPIHK_5'), ('GTTATTATGACTTCAT', 'EPIHK_5'), ('TACAAGAGAGGGGTCC', 'EPIHK_5'), ('TATTCCTAACTAGCGA', 'EPIHK_5'), ('TCGAGTTAATATGCGC', 'EPIHK_5'), ('TCGCTTCAACTAAAAA', 'EPIHK_5'), ('TCTCAGCTCTTAGCCG', 'EPIHK_5'), ('TCTTGACATAGCGATG', 'EPIHK_5'), ('TGTGGAGCGCCCTTAC', 'EPIHK_5'), ('TTGACTCACCGAATAA', 'EPIHK_5'), ('TTGCAATTGAAACATA', 'EPIHK_5'), ('TTGTATCAGTCGCGCC', 'EPIHK_5'), ('TTTATATCCAACACCA', 'EPIHK_5'), ('AAAGGCGCGCCTTCAA', 'EPIHK_6'), ('AAGCCCAGCGGGTGAT', 'EPIHK_6'), ('ACTCTGGCTCGCTAAT', 'EPIHK_6'), ('ATACACGCATGTGCCA', 'EPIHK_6'), ('ATATAAAAAACTTAGT', 'EPIHK_6'), ('CCCCTCCTCTAAAGTT', 'EPIHK_6'), ('CCGCATTAGCGGGAGG', 'EPIHK_6'), ('CGCACTTTACGAGACA', 'EPIHK_6'), ('GAATAATAGAACAGAG', 'EPIHK_6'), ('GAGAGCTGCAGAAGCG', 'EPIHK_6'), ('GATCGCCACTGATAAG', 'EPIHK_6'), ('GCAGCGTGCCGGTCAT', 'EPIHK_6'), ('GCCGCTGCGGCGTGTG', 'EPIHK_6'), ('GTAAGCTTCATGGAGT', 'EPIHK_6'), ('GTCCGTCAGCATAAAC', 'EPIHK_6'), ('TCTCAGCTCTTAGCCG', 'EPIHK_6'), ('TGATCTGTGACATTGC', 'EPIHK_6'), ('TTTCGTGATACTCACA', 'EPIHK_6'), ('ACCGTTGTACACACCA', 'EPIHK_7'), ('AGCCCATGCTGGGGAT', 'EPIHK_7'), ('ATACACGCATGTGCCA', 'EPIHK_7'), ('CCGCATTAGCGGGAGG', 'EPIHK_7'), ('CCTTTCTCAAAACATA', 'EPIHK_7'), ('CGCACTTTACGAGACA', 'EPIHK_7'), ('CTCCTAGGGGACGATT', 'EPIHK_7'), ('GCCGCTGCGGCGTGTG', 'EPIHK_7'), ('TCTGGAAACGATCCCC', 'EPIHK_7'), ('AAGCGGTGATGTGATT', 'EPIHK_8'), ('AGCCCATGCTGGGGAT', 'EPIHK_8'), ('ATACACGCATGTGCCA', 'EPIHK_8'), ('ATGGCCCACGGGCATA', 'EPIHK_8'), ('CATAAAAGACTGTATA', 'EPIHK_8'), ('CCCTTTACGGATCTCT', 'EPIHK_8'), ('CCGCATTAGCGGGAGG', 'EPIHK_8'), ('CGATCTTTACGAAAAA', 'EPIHK_8'), ('CTAGCACAGCGTAGGC', 'EPIHK_8'), ('CTATAAACCGTTTGTA', 'EPIHK_8'), ('GCCTTTGCGCGCAGTC', 'EPIHK_8'), ('GTAAGCTTCATGGAGT', 'EPIHK_8'), ('GTTATTATGACTTCAT', 'EPIHK_8'), ('TGTGGAGCGCCCTTAC', 'EPIHK_8'), ('TTACGAATTTGATTCC', 'EPIHK_8'), ('TTTCACAGAACCTATC', 'EPIHK_8')]

Fit neutralization curves after applying QC¶

No we re-fit curves after applying all the QC:

In [28]:
fits_qc = neutcurve.CurveFits(
    frac_infectivity.rename(
        columns={
            "frac_infectivity_ceiling": "fraction infectivity",
            "concentration": "serum concentration",
        }
    ),
    conc_col="serum concentration",
    fracinf_col="fraction infectivity",
    virus_col="strain",
    serum_col="serum",
    replicate_col="plate_barcode",
    fixtop=curvefit_params["fixtop"],
    fixbottom=curvefit_params["fixbottom"],
    fixslope=curvefit_params["fixslope"],
)

fit_params_qc = fits_qc.fitParams(average_only=False, no_average=True)
assert len(fit_params_qc) <= len(
    fits_noqc.fitParams(average_only=False, no_average=True)
)

print(f"Assigning fits for this plate to {group}")
fit_params_qc.insert(0, "group", group)
Assigning fits for this plate to EPIHK

Plot all the curves that passed QC:

In [29]:
if fits_qc.sera:
    fig, _ = fits_qc.plotReplicates(
        attempt_shared_legend=False,
        legendfontsize=8,
        titlesize=9,
        ticksize=10,
        ncol=6,
        draw_in_bounds=True,
    )
    display_curve_fig(fig, curve_display_method)
    plt.close(fig)
else:
    print("No sera passed QC.")
figure

Save results to files¶

In [30]:
print(f"Writing fraction infectivities to {frac_infectivity_csv}")
(
    frac_infectivity[
        [
            "serum",
            "strain",
            "plate_barcode",
            "dilution_factor",
            "frac_infectivity_raw",
            "frac_infectivity_ceiling",
        ]
    ]
    .sort_values(["serum", "plate_barcode", "dilution_factor"])
    .to_csv(frac_infectivity_csv, index=False, float_format="%.4g")
)

print(f"\nWriting fit parameters to {fits_csv}")
(
    fit_params_qc.drop(columns=["nreplicates", "ic50_str"]).to_csv(
        fits_csv, index=False, float_format="%.4g"
    )
)

print(f"\nPickling neutcurve.CurveFits object for these data to {fits_pickle}")
with open(fits_pickle, "wb") as f:
    pickle.dump(fits_qc, f)

print(f"\nWriting QC drops to {qc_drops_yaml}")


def tup_to_str(x):
    return " ".join(x) if isinstance(x, tuple) else x


qc_drops_for_yaml = {
    key: {tup_to_str(key2): val2 for key2, val2 in val.items()}
    for key, val in qc_drops.items()
}
with open(qc_drops_yaml, "w") as f:
    yaml.YAML(typ="rt").dump(qc_drops_for_yaml, f)
print("\nHere are the QC drops:\n***************************")
yaml.YAML(typ="rt").dump(qc_drops_for_yaml, sys.stdout)
Writing fraction infectivities to results/plates/plate12_EPIHK/frac_infectivity.csv

Writing fit parameters to results/plates/plate12_EPIHK/curvefits.csv

Pickling neutcurve.CurveFits object for these data to results/plates/plate12_EPIHK/curvefits.pickle
Writing QC drops to results/plates/plate12_EPIHK/qc_drops.yml

Here are the QC drops:
***************************
wells: {}
barcodes: {}
barcode_wells:
  CTCTTACGCTCCTACG D12: min_no_serum_count_per_viral_barcode_well
  ATGGTTTTACGTCCAT H4: max_frac_infectivity_per_viral_barcode_well
  CGTTAACGGCCTATCC B7: max_frac_infectivity_per_viral_barcode_well
  AGTCCTATCCTCAAAT C7: max_frac_infectivity_per_viral_barcode_well
  ATAACTGAGGGCATTG F7: max_frac_infectivity_per_viral_barcode_well
  AGTCCTATCCTCAAAT D8: max_frac_infectivity_per_viral_barcode_well
  TCTCAGCTCTTAGCCG G8: max_frac_infectivity_per_viral_barcode_well
  CACCAATCTTCGAACT H8: max_frac_infectivity_per_viral_barcode_well
  AGTCCTATCCTCAAAT H10: max_frac_infectivity_per_viral_barcode_well
  CACCAATCTTCGAACT E11: max_frac_infectivity_per_viral_barcode_well
  AGTCCTATCCTCAAAT E11: max_frac_infectivity_per_viral_barcode_well
barcode_serum_replicates:
  CCCTTTACGGATCTCT EPIHK_1: goodness_of_fit
  AAAGGCGCGCCTTCAA EPIHK_3: goodness_of_fit
  AAAGTAGCAGAGGATT EPIHK_3: goodness_of_fit
  AACCACCCCAGAGATG EPIHK_3: goodness_of_fit
  AACTGCGTTCATCGAT EPIHK_3: goodness_of_fit
  AACTTCCGTCGCCTGA EPIHK_3: goodness_of_fit
  AAGAAGCTATAGAAGT EPIHK_3: goodness_of_fit
  AAGCCCAGCGGGTGAT EPIHK_3: goodness_of_fit
  AATGAAACAATCGAAC EPIHK_3: goodness_of_fit
  ACTCTGGCTCGCTAAT EPIHK_3: goodness_of_fit
  AGACCATCGCACCCAA EPIHK_3: goodness_of_fit
  AGACCGCCAGTTTCGT EPIHK_3: goodness_of_fit
  AGCCCATGCTGGGGAT EPIHK_3: goodness_of_fit
  AGGCCCGTAAGGACTA EPIHK_3: goodness_of_fit
  ATAACGTTTGTGCAAA EPIHK_3: goodness_of_fit
  ATATAAAAAACTTAGT EPIHK_3: goodness_of_fit
  ATGGCCCACGGGCATA EPIHK_3: goodness_of_fit
  ATTAGATTATAACGTA EPIHK_3: goodness_of_fit
  CAAAATCTACGGCGAC EPIHK_3: goodness_of_fit
  CATAAAAGACTGTATA EPIHK_3: goodness_of_fit
  CATGGGAATTGCCACT EPIHK_3: goodness_of_fit
  CCCCCGCTGTTTAAAA EPIHK_3: goodness_of_fit
  CCCTTTACGGATCTCT EPIHK_3: goodness_of_fit
  CCGCATTAGCGGGAGG EPIHK_3: goodness_of_fit
  CCGCGCACGTTTAGAG EPIHK_3: goodness_of_fit
  CGATCTTTACGAAAAA EPIHK_3: goodness_of_fit
  CGGGGACAAGATTGTA EPIHK_3: goodness_of_fit
  CGTTTTTGGTTCGAGG EPIHK_3: goodness_of_fit
  CTAATTTAAGTATCAA EPIHK_3: goodness_of_fit
  CTAGCACAGCGTAGGC EPIHK_3: goodness_of_fit
  CTATAAACCGTTTGTA EPIHK_3: goodness_of_fit
  CTATCTTAATCTACAG EPIHK_3: goodness_of_fit
  GAAGTACGCTGAATGA EPIHK_3: goodness_of_fit
  GAAGTGCGTATTGAGT EPIHK_3: goodness_of_fit
  GAGAGCTGCAGAAGCG EPIHK_3: goodness_of_fit
  GAGGGGTAGAGATACG EPIHK_3: goodness_of_fit
  GCAAACAGTGTAGTTG EPIHK_3: goodness_of_fit
  GTAAGCTTCATGGAGT EPIHK_3: goodness_of_fit
  GTAGATACTAGGACCA EPIHK_3: goodness_of_fit
  GTCGCCGCTAATCCGA EPIHK_3: goodness_of_fit
  GTTGCTCCGACACGCC EPIHK_3: goodness_of_fit
  TACCTGCTGCGGAACG EPIHK_3: goodness_of_fit
  TACTAGCAATAAAATC EPIHK_3: goodness_of_fit
  TATTCCTAACTAGCGA EPIHK_3: goodness_of_fit
  TCACGACTCGACTAAC EPIHK_3: goodness_of_fit
  TCTCAGCTCTTAGCCG EPIHK_3: goodness_of_fit
  TGTGGAGCGCCCTTAC EPIHK_3: goodness_of_fit
  TGTTGTAATCTGAATA EPIHK_3: goodness_of_fit
  TTGACTCACCGAATAA EPIHK_3: goodness_of_fit
  TTGCAATTGAAACATA EPIHK_3: goodness_of_fit
  TTTATATCCAACACCA EPIHK_3: goodness_of_fit
  TTTCACAGAACCTATC EPIHK_3: goodness_of_fit
  AAAGGCGCGCCTTCAA EPIHK_5: goodness_of_fit
  AACTGCGTTCATCGAT EPIHK_5: goodness_of_fit
  AAGAAGACTTTGTGAT EPIHK_5: goodness_of_fit
  AAGGGGCCTCATAATG EPIHK_5: goodness_of_fit
  AAGTTAGTAGACCCAC EPIHK_5: goodness_of_fit
  ACAAGATTCGGGGGAC EPIHK_5: goodness_of_fit
  ACCGAATGAATCATCC EPIHK_5: goodness_of_fit
  ACCGTTGTACACACCA EPIHK_5: goodness_of_fit
  ACTACGAGGCTACGTA EPIHK_5: goodness_of_fit
  AGACCATCGCACCCAA EPIHK_5: goodness_of_fit
  AGATCCACCCTATAGT EPIHK_5: goodness_of_fit
  AGTGTTGAATAGGCGA EPIHK_5: goodness_of_fit
  AGTTTTTATAACTTGC EPIHK_5: goodness_of_fit
  ATACACGCATGTGCCA EPIHK_5: goodness_of_fit
  ATTAGATTATAACGTA EPIHK_5: goodness_of_fit
  CAAAATCTACGGCGAC EPIHK_5: goodness_of_fit
  CAATTCGCCGTTCCCC EPIHK_5: goodness_of_fit
  CACCGCGCCGAGCACC EPIHK_5: goodness_of_fit
  CATAAAAGACTGTATA EPIHK_5: goodness_of_fit
  CCCCCGCTGTTTAAAA EPIHK_5: goodness_of_fit
  CCCTTTACGGATCTCT EPIHK_5: goodness_of_fit
  CCGCATTAGCGGGAGG EPIHK_5: goodness_of_fit
  CCTTGATGCATTCCCG EPIHK_5: goodness_of_fit
  CGCACTTTACGAGACA EPIHK_5: goodness_of_fit
  CGTTCAGCGATAACGG EPIHK_5: goodness_of_fit
  CTATAAACCGTTTGTA EPIHK_5: goodness_of_fit
  CTGAGCTGCCAATAAG EPIHK_5: goodness_of_fit
  CTGTACCTGCAGTTGA EPIHK_5: goodness_of_fit
  GAAGTACGCTGAATGA EPIHK_5: goodness_of_fit
  GAGAGCTGCAGAAGCG EPIHK_5: goodness_of_fit
  GCAGCGTGCCGGTCAT EPIHK_5: goodness_of_fit
  GCCATTTACTGAAGGG EPIHK_5: goodness_of_fit
  GCCGCTGCGGCGTGTG EPIHK_5: goodness_of_fit
  GTAGAACTGCGGCCCC EPIHK_5: goodness_of_fit
  GTTATTATGACTTCAT EPIHK_5: goodness_of_fit
  TACAAGAGAGGGGTCC EPIHK_5: goodness_of_fit
  TATTCCTAACTAGCGA EPIHK_5: goodness_of_fit
  TCGAGTTAATATGCGC EPIHK_5: goodness_of_fit
  TCGCTTCAACTAAAAA EPIHK_5: goodness_of_fit
  TCTCAGCTCTTAGCCG EPIHK_5: goodness_of_fit
  TCTTGACATAGCGATG EPIHK_5: goodness_of_fit
  TGTGGAGCGCCCTTAC EPIHK_5: goodness_of_fit
  TTGACTCACCGAATAA EPIHK_5: goodness_of_fit
  TTGCAATTGAAACATA EPIHK_5: goodness_of_fit
  TTGTATCAGTCGCGCC EPIHK_5: goodness_of_fit
  TTTATATCCAACACCA EPIHK_5: goodness_of_fit
  AAAGGCGCGCCTTCAA EPIHK_6: goodness_of_fit
  AAGCCCAGCGGGTGAT EPIHK_6: goodness_of_fit
  ACTCTGGCTCGCTAAT EPIHK_6: goodness_of_fit
  ATACACGCATGTGCCA EPIHK_6: goodness_of_fit
  ATATAAAAAACTTAGT EPIHK_6: goodness_of_fit
  CCCCTCCTCTAAAGTT EPIHK_6: goodness_of_fit
  CCGCATTAGCGGGAGG EPIHK_6: goodness_of_fit
  CGCACTTTACGAGACA EPIHK_6: goodness_of_fit
  GAATAATAGAACAGAG EPIHK_6: goodness_of_fit
  GAGAGCTGCAGAAGCG EPIHK_6: goodness_of_fit
  GATCGCCACTGATAAG EPIHK_6: goodness_of_fit
  GCAGCGTGCCGGTCAT EPIHK_6: goodness_of_fit
  GCCGCTGCGGCGTGTG EPIHK_6: goodness_of_fit
  GTAAGCTTCATGGAGT EPIHK_6: goodness_of_fit
  GTCCGTCAGCATAAAC EPIHK_6: goodness_of_fit
  TCTCAGCTCTTAGCCG EPIHK_6: goodness_of_fit
  TGATCTGTGACATTGC EPIHK_6: goodness_of_fit
  TTTCGTGATACTCACA EPIHK_6: goodness_of_fit
  ACCGTTGTACACACCA EPIHK_7: goodness_of_fit
  AGCCCATGCTGGGGAT EPIHK_7: goodness_of_fit
  ATACACGCATGTGCCA EPIHK_7: goodness_of_fit
  CCGCATTAGCGGGAGG EPIHK_7: goodness_of_fit
  CCTTTCTCAAAACATA EPIHK_7: goodness_of_fit
  CGCACTTTACGAGACA EPIHK_7: goodness_of_fit
  CTCCTAGGGGACGATT EPIHK_7: goodness_of_fit
  GCCGCTGCGGCGTGTG EPIHK_7: goodness_of_fit
  TCTGGAAACGATCCCC EPIHK_7: goodness_of_fit
  AAGCGGTGATGTGATT EPIHK_8: goodness_of_fit
  AGCCCATGCTGGGGAT EPIHK_8: goodness_of_fit
  ATACACGCATGTGCCA EPIHK_8: goodness_of_fit
  ATGGCCCACGGGCATA EPIHK_8: goodness_of_fit
  CATAAAAGACTGTATA EPIHK_8: goodness_of_fit
  CCCTTTACGGATCTCT EPIHK_8: goodness_of_fit
  CCGCATTAGCGGGAGG EPIHK_8: goodness_of_fit
  CGATCTTTACGAAAAA EPIHK_8: goodness_of_fit
  CTAGCACAGCGTAGGC EPIHK_8: goodness_of_fit
  CTATAAACCGTTTGTA EPIHK_8: goodness_of_fit
  GCCTTTGCGCGCAGTC EPIHK_8: goodness_of_fit
  GTAAGCTTCATGGAGT EPIHK_8: goodness_of_fit
  GTTATTATGACTTCAT EPIHK_8: goodness_of_fit
  TGTGGAGCGCCCTTAC EPIHK_8: goodness_of_fit
  TTACGAATTTGATTCC EPIHK_8: goodness_of_fit
  TTTCACAGAACCTATC EPIHK_8: goodness_of_fit
serum_replicates: {}
In [ ]: