######## snakemake preamble start (automatically inserted, do not edit) ########
import sys;sys.path.extend(['/fh/fast/bloom_j/software/miniforge3/envs/seqneut-pipeline/lib/python3.13/site-packages', '/fh/fast/bloom_j/computational_notebooks/jbloom/2025/flu-seqneut-2025/seqneut-pipeline', '/fh/fast/bloom_j/computational_notebooks/jbloom/2025/flu-seqneut-2025', '/fh/fast/bloom_j/software/miniforge3/envs/seqneut-pipeline/bin', '/fh/fast/bloom_j/software/miniforge3/envs/seqneut-pipeline/lib/python3.13', '/fh/fast/bloom_j/software/miniforge3/envs/seqneut-pipeline/lib/python3.13/lib-dynload', '/fh/fast/bloom_j/software/miniforge3/envs/seqneut-pipeline/lib/python3.13/site-packages', '/home/jbloom/.cache/snakemake/snakemake/source-cache/runtime-cache/tmpfro_n8p6/file/fh/fast/bloom_j/computational_notebooks/jbloom/2025/flu-seqneut-2025/seqneut-pipeline/notebooks', '/fh/fast/bloom_j/computational_notebooks/jbloom/2025/flu-seqneut-2025/seqneut-pipeline/notebooks']);import pickle;from snakemake import script;script.snakemake = pickle.loads(b'\x80\x04\x95S\xec\x00\x00\x00\x00\x00\x00\x8c\x10snakemake.script\x94\x8c\tSnakemake\x94\x93\x94)\x81\x94}\x94(\x8c\x05input\x94\x8c\x0csnakemake.io\x94\x8c\nInputFiles\x94\x93\x94)\x81\x94(\x8c.results/barcode_counts/plate14_EPIHK_21_40.csv\x94\x8c.results/barcode_counts/plate14_EPIHK_21_92.csv\x94\x8c/results/barcode_counts/plate14_EPIHK_21_212.csv\x94\x8c/results/barcode_counts/plate14_EPIHK_21_487.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_21_1119.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_21_2575.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_21_5921.csv\x94\x8c1results/barcode_counts/plate14_EPIHK_21_13619.csv\x94\x8c.results/barcode_counts/plate14_EPIHK_22_40.csv\x94\x8c.results/barcode_counts/plate14_EPIHK_22_92.csv\x94\x8c/results/barcode_counts/plate14_EPIHK_22_212.csv\x94\x8c/results/barcode_counts/plate14_EPIHK_22_487.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_22_1119.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_22_2575.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_22_5921.csv\x94\x8c1results/barcode_counts/plate14_EPIHK_22_13619.csv\x94\x8c.results/barcode_counts/plate14_EPIHK_23_40.csv\x94\x8c.results/barcode_counts/plate14_EPIHK_23_92.csv\x94\x8c/results/barcode_counts/plate14_EPIHK_23_212.csv\x94\x8c/results/barcode_counts/plate14_EPIHK_23_487.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_23_1119.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_23_2575.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_23_5921.csv\x94\x8c1results/barcode_counts/plate14_EPIHK_23_13619.csv\x94\x8c.results/barcode_counts/plate14_EPIHK_24_40.csv\x94\x8c.results/barcode_counts/plate14_EPIHK_24_92.csv\x94\x8c/results/barcode_counts/plate14_EPIHK_24_212.csv\x94\x8c/results/barcode_counts/plate14_EPIHK_24_487.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_24_1119.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_24_2575.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_24_5921.csv\x94\x8c1results/barcode_counts/plate14_EPIHK_24_13619.csv\x94\x8c.results/barcode_counts/plate14_EPIHK_25_40.csv\x94\x8c.results/barcode_counts/plate14_EPIHK_25_92.csv\x94\x8c/results/barcode_counts/plate14_EPIHK_25_212.csv\x94\x8c/results/barcode_counts/plate14_EPIHK_25_487.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_25_1119.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_25_2575.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_25_5921.csv\x94\x8c1results/barcode_counts/plate14_EPIHK_25_13619.csv\x94\x8c.results/barcode_counts/plate14_EPIHK_26_40.csv\x94\x8c.results/barcode_counts/plate14_EPIHK_26_92.csv\x94\x8c/results/barcode_counts/plate14_EPIHK_26_212.csv\x94\x8c/results/barcode_counts/plate14_EPIHK_26_487.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_26_1119.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_26_2575.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_26_5921.csv\x94\x8c1results/barcode_counts/plate14_EPIHK_26_13619.csv\x94\x8c.results/barcode_counts/plate14_EPIHK_27_40.csv\x94\x8c.results/barcode_counts/plate14_EPIHK_27_92.csv\x94\x8c/results/barcode_counts/plate14_EPIHK_27_212.csv\x94\x8c/results/barcode_counts/plate14_EPIHK_27_487.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_27_1119.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_27_2575.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_27_5921.csv\x94\x8c1results/barcode_counts/plate14_EPIHK_27_13619.csv\x94\x8c.results/barcode_counts/plate14_EPIHK_28_40.csv\x94\x8c.results/barcode_counts/plate14_EPIHK_28_92.csv\x94\x8c/results/barcode_counts/plate14_EPIHK_28_212.csv\x94\x8c/results/barcode_counts/plate14_EPIHK_28_487.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_28_1119.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_28_2575.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_28_5921.csv\x94\x8c1results/barcode_counts/plate14_EPIHK_28_13619.csv\x94\x8c.results/barcode_counts/plate14_EPIHK_29_40.csv\x94\x8c.results/barcode_counts/plate14_EPIHK_29_92.csv\x94\x8c/results/barcode_counts/plate14_EPIHK_29_212.csv\x94\x8c/results/barcode_counts/plate14_EPIHK_29_487.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_29_1119.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_29_2575.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_29_5921.csv\x94\x8c1results/barcode_counts/plate14_EPIHK_29_13619.csv\x94\x8c.results/barcode_counts/plate14_EPIHK_30_40.csv\x94\x8c.results/barcode_counts/plate14_EPIHK_30_92.csv\x94\x8c/results/barcode_counts/plate14_EPIHK_30_212.csv\x94\x8c/results/barcode_counts/plate14_EPIHK_30_487.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_30_1119.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_30_2575.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_30_5921.csv\x94\x8c1results/barcode_counts/plate14_EPIHK_30_13619.csv\x94\x8c.results/barcode_counts/plate14_EPIHK_31_40.csv\x94\x8c.results/barcode_counts/plate14_EPIHK_31_92.csv\x94\x8c/results/barcode_counts/plate14_EPIHK_31_212.csv\x94\x8c/results/barcode_counts/plate14_EPIHK_31_487.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_31_1119.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_31_2575.csv\x94\x8c0results/barcode_counts/plate14_EPIHK_31_5921.csv\x94\x8c1results/barcode_counts/plate14_EPIHK_31_13619.csv\x94\x8c)results/barcode_counts/plate14_none-1.csv\x94\x8c)results/barcode_counts/plate14_none-2.csv\x94\x8c)results/barcode_counts/plate14_none-3.csv\x94\x8c)results/barcode_counts/plate14_none-4.csv\x94\x8c)results/barcode_counts/plate14_none-5.csv\x94\x8c)results/barcode_counts/plate14_none-6.csv\x94\x8c)results/barcode_counts/plate14_none-7.csv\x94\x8c)results/barcode_counts/plate14_none-8.csv\x94\x8c-results/barcode_fates/plate14_EPIHK_21_40.csv\x94\x8c-results/barcode_fates/plate14_EPIHK_21_92.csv\x94\x8c.results/barcode_fates/plate14_EPIHK_21_212.csv\x94\x8c.results/barcode_fates/plate14_EPIHK_21_487.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_21_1119.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_21_2575.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_21_5921.csv\x94\x8c0results/barcode_fates/plate14_EPIHK_21_13619.csv\x94\x8c-results/barcode_fates/plate14_EPIHK_22_40.csv\x94\x8c-results/barcode_fates/plate14_EPIHK_22_92.csv\x94\x8c.results/barcode_fates/plate14_EPIHK_22_212.csv\x94\x8c.results/barcode_fates/plate14_EPIHK_22_487.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_22_1119.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_22_2575.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_22_5921.csv\x94\x8c0results/barcode_fates/plate14_EPIHK_22_13619.csv\x94\x8c-results/barcode_fates/plate14_EPIHK_23_40.csv\x94\x8c-results/barcode_fates/plate14_EPIHK_23_92.csv\x94\x8c.results/barcode_fates/plate14_EPIHK_23_212.csv\x94\x8c.results/barcode_fates/plate14_EPIHK_23_487.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_23_1119.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_23_2575.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_23_5921.csv\x94\x8c0results/barcode_fates/plate14_EPIHK_23_13619.csv\x94\x8c-results/barcode_fates/plate14_EPIHK_24_40.csv\x94\x8c-results/barcode_fates/plate14_EPIHK_24_92.csv\x94\x8c.results/barcode_fates/plate14_EPIHK_24_212.csv\x94\x8c.results/barcode_fates/plate14_EPIHK_24_487.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_24_1119.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_24_2575.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_24_5921.csv\x94\x8c0results/barcode_fates/plate14_EPIHK_24_13619.csv\x94\x8c-results/barcode_fates/plate14_EPIHK_25_40.csv\x94\x8c-results/barcode_fates/plate14_EPIHK_25_92.csv\x94\x8c.results/barcode_fates/plate14_EPIHK_25_212.csv\x94\x8c.results/barcode_fates/plate14_EPIHK_25_487.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_25_1119.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_25_2575.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_25_5921.csv\x94\x8c0results/barcode_fates/plate14_EPIHK_25_13619.csv\x94\x8c-results/barcode_fates/plate14_EPIHK_26_40.csv\x94\x8c-results/barcode_fates/plate14_EPIHK_26_92.csv\x94\x8c.results/barcode_fates/plate14_EPIHK_26_212.csv\x94\x8c.results/barcode_fates/plate14_EPIHK_26_487.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_26_1119.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_26_2575.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_26_5921.csv\x94\x8c0results/barcode_fates/plate14_EPIHK_26_13619.csv\x94\x8c-results/barcode_fates/plate14_EPIHK_27_40.csv\x94\x8c-results/barcode_fates/plate14_EPIHK_27_92.csv\x94\x8c.results/barcode_fates/plate14_EPIHK_27_212.csv\x94\x8c.results/barcode_fates/plate14_EPIHK_27_487.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_27_1119.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_27_2575.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_27_5921.csv\x94\x8c0results/barcode_fates/plate14_EPIHK_27_13619.csv\x94\x8c-results/barcode_fates/plate14_EPIHK_28_40.csv\x94\x8c-results/barcode_fates/plate14_EPIHK_28_92.csv\x94\x8c.results/barcode_fates/plate14_EPIHK_28_212.csv\x94\x8c.results/barcode_fates/plate14_EPIHK_28_487.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_28_1119.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_28_2575.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_28_5921.csv\x94\x8c0results/barcode_fates/plate14_EPIHK_28_13619.csv\x94\x8c-results/barcode_fates/plate14_EPIHK_29_40.csv\x94\x8c-results/barcode_fates/plate14_EPIHK_29_92.csv\x94\x8c.results/barcode_fates/plate14_EPIHK_29_212.csv\x94\x8c.results/barcode_fates/plate14_EPIHK_29_487.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_29_1119.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_29_2575.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_29_5921.csv\x94\x8c0results/barcode_fates/plate14_EPIHK_29_13619.csv\x94\x8c-results/barcode_fates/plate14_EPIHK_30_40.csv\x94\x8c-results/barcode_fates/plate14_EPIHK_30_92.csv\x94\x8c.results/barcode_fates/plate14_EPIHK_30_212.csv\x94\x8c.results/barcode_fates/plate14_EPIHK_30_487.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_30_1119.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_30_2575.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_30_5921.csv\x94\x8c0results/barcode_fates/plate14_EPIHK_30_13619.csv\x94\x8c-results/barcode_fates/plate14_EPIHK_31_40.csv\x94\x8c-results/barcode_fates/plate14_EPIHK_31_92.csv\x94\x8c.results/barcode_fates/plate14_EPIHK_31_212.csv\x94\x8c.results/barcode_fates/plate14_EPIHK_31_487.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_31_1119.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_31_2575.csv\x94\x8c/results/barcode_fates/plate14_EPIHK_31_5921.csv\x94\x8c0results/barcode_fates/plate14_EPIHK_31_13619.csv\x94\x8c(results/barcode_fates/plate14_none-1.csv\x94\x8c(results/barcode_fates/plate14_none-2.csv\x94\x8c(results/barcode_fates/plate14_none-3.csv\x94\x8c(results/barcode_fates/plate14_none-4.csv\x94\x8c(results/barcode_fates/plate14_none-5.csv\x94\x8c(results/barcode_fates/plate14_none-6.csv\x94\x8c(results/barcode_fates/plate14_none-7.csv\x94\x8c(results/barcode_fates/plate14_none-8.csv\x94\x8c\xbb/home/jbloom/.cache/snakemake/snakemake/source-cache/runtime-cache/tmpfro_n8p6/file/fh/fast/bloom_j/computational_notebooks/jbloom/2025/flu-seqneut-2025/seqneut-pipeline/notebook_funcs.py\x94e}\x94(\x8c\x06_names\x94}\x94(\x8c\ncount_csvs\x94K\x00K`\x86\x94\x8c\tfate_csvs\x94K`K\xc0\x86\x94\x8c\x0enotebook_funcs\x94K\xc0N\x86\x94u\x8c\x12_allowed_overrides\x94]\x94(\x8c\x05index\x94\x8c\x04sort\x94eh\xd6h\x06\x8c\x0eAttributeGuard\x94\x93\x94)\x81\x94}\x94\x8c\x04name\x94h\xd6sbh\xd7h\xd9)\x81\x94}\x94h\xdch\xd7sbh\xceh\x06\x8c\tNamedlist\x94\x93\x94)\x81\x94(h\nh\x0bh\x0ch\rh\x0eh\x0fh\x10h\x11h\x12h\x13h\x14h\x15h\x16h\x17h\x18h\x19h\x1ah\x1bh\x1ch\x1dh\x1eh\x1fh h!h"h#h$h%h&h\'h(h)h*h+h,h-h.h/h0h1h2h3h4h5h6h7h8h9h:h;h<h=h>h?h@hAhBhChDhEhFhGhHhIhJhKhLhMhNhOhPhQhRhShThUhVhWhXhYhZh[h\\h]h^h_h`hahbhchdhehfhghhhie}\x94(h\xcc}\x94h\xd4]\x94(h\xd6h\xd7eh\xd6h\xd9)\x81\x94}\x94h\xdch\xd6sbh\xd7h\xd9)\x81\x94}\x94h\xdch\xd7sbubh\xd0h\xe0)\x81\x94(hjhkhlhmhnhohphqhrhshthuhvhwhxhyhzh{h|h}h~h\x7fh\x80h\x81h\x82h\x83h\x84h\x85h\x86h\x87h\x88h\x89h\x8ah\x8bh\x8ch\x8dh\x8eh\x8fh\x90h\x91h\x92h\x93h\x94h\x95h\x96h\x97h\x98h\x99h\x9ah\x9bh\x9ch\x9dh\x9eh\x9fh\xa0h\xa1h\xa2h\xa3h\xa4h\xa5h\xa6h\xa7h\xa8h\xa9h\xaah\xabh\xach\xadh\xaeh\xafh\xb0h\xb1h\xb2h\xb3h\xb4h\xb5h\xb6h\xb7h\xb8h\xb9h\xbah\xbbh\xbch\xbdh\xbeh\xbfh\xc0h\xc1h\xc2h\xc3h\xc4h\xc5h\xc6h\xc7h\xc8h\xc9e}\x94(h\xcc}\x94h\xd4]\x94(h\xd6h\xd7eh\xd6h\xd9)\x81\x94}\x94h\xdch\xd6sbh\xd7h\xd9)\x81\x94}\x94h\xdch\xd7sbubh\xd2h\xcaub\x8c\x06output\x94h\x06\x8c\x0bOutputFiles\x94\x93\x94)\x81\x94(\x8c#results/plates/plate14/qc_drops.yml\x94\x8c+results/plates/plate14/frac_infectivity.csv\x94\x8c$results/plates/plate14/curvefits.csv\x94\x8c\'results/plates/plate14/curvefits.pickle\x94e}\x94(h\xcc}\x94(\x8c\x08qc_drops\x94K\x00N\x86\x94\x8c\x14frac_infectivity_csv\x94K\x01N\x86\x94\x8c\x08fits_csv\x94K\x02N\x86\x94\x8c\x0bfits_pickle\x94K\x03N\x86\x94uh\xd4]\x94(h\xd6h\xd7eh\xd6h\xd9)\x81\x94}\x94h\xdch\xd6sbh\xd7h\xd9)\x81\x94}\x94h\xdch\xd7sbh\xfbh\xf5h\xfdh\xf6h\xffh\xf7j\x01\x01\x00\x00h\xf8ub\x8c\r_params_store\x94h\x06\x8c\x06Params\x94\x93\x94)\x81\x94(}\x94(\x8c\x07barcode\x94}\x94(K\x00\x8c\x10AAACCCATAAGACCCC\x94K\x01\x8c\x10AAAGACCTTTAACTCT\x94K\x02\x8c\x10AAAGCTCTTTTCGTTC\x94K\x03\x8c\x10AAAGGCGCGCCTTCAA\x94K\x04\x8c\x10AAAGTAGCAGAGGATT\x94K\x05\x8c\x10AAATTCACAATATCCA\x94K\x06\x8c\x10AACACGTAGAACCGCC\x94K\x07\x8c\x10AACAGAAGTCCATGTA\x94K\x08\x8c\x10AACCACCCCAGAGATG\x94K\t\x8c\x10AACCGTACCGCGTTTA\x94K\n\x8c\x10AACCTACGAGACGTAA\x94K\x0b\x8c\x10AACGGTTCCGACTAAG\x94K\x0c\x8c\x10AACTGCGTTCATCGAT\x94K\r\x8c\x10AACTTCCCTGACTGCT\x94K\x0e\x8c\x10AACTTCCGTCGCCTGA\x94K\x0f\x8c\x10AAGAAGACTTTGTGAT\x94K\x10\x8c\x10AAGAAGCTATAGAAGT\x94K\x11\x8c\x10AAGATTGATTGAAGTT\x94K\x12\x8c\x10AAGCCCAGCGGGTGAT\x94K\x13\x8c\x10AAGCGGTGATGTGATT\x94K\x14\x8c\x10AAGGGGCCTCATAATG\x94K\x15\x8c\x10AAGGTCCCTATGTAAT\x94K\x16\x8c\x10AAGTATTGCTACACAT\x94K\x17\x8c\x10AAGTTAAGAGAAAGTT\x94K\x18\x8c\x10AAGTTAGTAGACCCAC\x94K\x19\x8c\x10AATCGCTGGCACCCGT\x94K\x1a\x8c\x10AATGAAACAATCGAAC\x94K\x1b\x8c\x10AATGCGAGCATGTCAA\x94K\x1c\x8c\x10AATTCGTGAGTACTAG\x94K\x1d\x8c\x10ACAAAGTCTCGAGAAG\x94K\x1e\x8c\x10ACAAGATTCGGGGGAC\x94K\x1f\x8c\x10ACAATCTGAACCATAC\x94K \x8c\x10ACACGGGTTGGCTGTA\x94K!\x8c\x10ACAGTACGATCTACGC\x94K"\x8c\x10ACAGTCCACCATTGAG\x94K#\x8c\x10ACATTTTCCAATAGGT\x94K$\x8c\x10ACCAGCAATGAGTTGT\x94K%\x8c\x10ACCCCCGGAGCTTGGC\x94K&\x8c\x10ACCGAATGAATCATCC\x94K\'\x8c\x10ACCGATTCACGAATAA\x94K(\x8c\x10ACCGTTGTACACACCA\x94K)\x8c\x10ACGCAAATAGACCGAA\x94K*\x8c\x10ACGGGGATTGGCTGTT\x94K+\x8c\x10ACGTATGATTTTCGAG\x94K,\x8c\x10ACGTCCATTAAGATCA\x94K-\x8c\x10ACGTGTCTCCGAGCAA\x94K.\x8c\x10ACTACGAGGCTACGTA\x94K/\x8c\x10ACTCTGGCTCGCTAAT\x94K0\x8c\x10ACTGTCTAGAAATTTT\x94K1\x8c\x10AGAAAATCTCAGATAC\x94K2\x8c\x10AGACCATCGCACCCAA\x94K3\x8c\x10AGACCGCCAGTTTCGT\x94K4\x8c\x10AGAGCTAAAAAGAGGA\x94K5\x8c\x10AGATCCACCCTATAGT\x94K6\x8c\x10AGATCCCAGGTCCTTT\x94K7\x8c\x10AGCATAGGGATATGTG\x94K8\x8c\x10AGCATCTAACAGATAG\x94K9\x8c\x10AGCCCATGCTGGGGAT\x94K:\x8c\x10AGCGACATCGCCCTTT\x94K;\x8c\x10AGCTCCTGGGGTATCA\x94K<\x8c\x10AGCTGAATTAAGTATG\x94K=\x8c\x10AGGAAAGAAACTGGAG\x94K>\x8c\x10AGGACTATAGTTGGCA\x94K?\x8c\x10AGGAGTATGAAGAGCG\x94K@\x8c\x10AGGCCCGTAAGGACTA\x94KA\x8c\x10AGGTTCAGACTCTTGC\x94KB\x8c\x10AGTAAACATGCATTGG\x94KC\x8c\x10AGTATTTGCGCTTCAA\x94KD\x8c\x10AGTCCTATCCTCAAAT\x94KE\x8c\x10AGTCGTTTAGATAGTT\x94KF\x8c\x10AGTGTTGAATAGGCGA\x94KG\x8c\x10AGTGTTGGCTTGGTTA\x94KH\x8c\x10AGTTCCATAGGCATGG\x94KI\x8c\x10AGTTGGGGTCTCCCTT\x94KJ\x8c\x10AGTTTTTATAACTTGC\x94KK\x8c\x10ATAACGTTTGTGCAAA\x94KL\x8c\x10ATAACTGAGGGCATTG\x94KM\x8c\x10ATACACGAGGTTGTGA\x94KN\x8c\x10ATACACGCATGTGCCA\x94KO\x8c\x10ATAGAAAATTATCCGC\x94KP\x8c\x10ATAGAATCGCAAATTA\x94KQ\x8c\x10ATAGGATATATGGCTG\x94KR\x8c\x10ATATAAAAAACTTAGT\x94KS\x8c\x10ATCAGGATAATCGCGC\x94KT\x8c\x10ATCCGATTTAAAGGCA\x94KU\x8c\x10ATGGCCCACGGGCATA\x94KV\x8c\x10ATGGGATTGGAGAAAC\x94KW\x8c\x10ATGGTTTTACGTCCAT\x94KX\x8c\x10ATTAGATTATAACGTA\x94KY\x8c\x10ATTAGGGCTACGTGAG\x94KZ\x8c\x10ATTATCATATCTAATA\x94K[\x8c\x10ATTCCGAATGGGGTAG\x94K\\\x8c\x10ATTTAAATTCGAGGAC\x94K]\x8c\x10ATTTACTCATTATACG\x94K^\x8c\x10ATTTTTCTATGGCTAC\x94K_\x8c\x10CAAAAGCAGCACGATA\x94K`\x8c\x10CAAAATCTACGGCGAC\x94Ka\x8c\x10CAAATGCTGCATTAGG\x94Kb\x8c\x10CAATTCGCCGTTCCCC\x94Kc\x8c\x10CACAGACAATAAAAAA\x94Kd\x8c\x10CACCAATCTTCGAACT\x94Ke\x8c\x10CACCATCAGCACCTAG\x94Kf\x8c\x10CACCGCGCCGAGCACC\x94Kg\x8c\x10CACCTAGGATCGCACT\x94Kh\x8c\x10CACGGCCGGCGAACTC\x94Ki\x8c\x10CACGGGCTAATGTCTC\x94Kj\x8c\x10CACTAGATGTACAGTC\x94Kk\x8c\x10CAGAACCTCGTTGTCT\x94Kl\x8c\x10CAGATAGTGATGAACA\x94Km\x8c\x10CAGGCTCTAGAGCTCT\x94Kn\x8c\x10CATAAAAGACTGTATA\x94Ko\x8c\x10CATGGGAATTGCCACT\x94Kp\x8c\x10CATGTGGAGCCCAACA\x94Kq\x8c\x10CATTGAGACGCGCAAG\x94Kr\x8c\x10CATTTCTGATGAATTG\x94Ks\x8c\x10CCAACACAAAAAATTA\x94Kt\x8c\x10CCAAGCTTGGCGCATC\x94Ku\x8c\x10CCCCCGCTGTTTAAAA\x94Kv\x8c\x10CCCCTCCTCTAAAGTT\x94Kw\x8c\x10CCCTATGAAATAAGCT\x94Kx\x8c\x10CCCTGCGCGGCTCGGG\x94Ky\x8c\x10CCCTTTACGGATCTCT\x94Kz\x8c\x10CCGCATTAGCGGGAGG\x94K{\x8c\x10CCGCGCACGTTTAGAG\x94K|\x8c\x10CCGGATAAATCAGAAC\x94K}\x8c\x10CCTGGGTTAAGTTGTG\x94K~\x8c\x10CCTTGATGCATTCCCG\x94K\x7f\x8c\x10CCTTTCTCAAAACATA\x94K\x80\x8c\x10CGAAAACATTACAAAT\x94K\x81\x8c\x10CGAAACACGTCCCAGT\x94K\x82\x8c\x10CGAACCGCAGACACGT\x94K\x83\x8c\x10CGACTCCACGGACGCC\x94K\x84\x8c\x10CGATCTTTACGAAAAA\x94K\x85\x8c\x10CGCACTTTACGAGACA\x94K\x86\x8c\x10CGCAGCATTGGTCGCC\x94K\x87\x8c\x10CGCGACACCCTTCCGG\x94K\x88\x8c\x10CGGACCCTAGATGGTA\x94K\x89\x8c\x10CGGCCAGGGAATCAAA\x94K\x8a\x8c\x10CGGGAAATGTAAATGA\x94K\x8b\x8c\x10CGGGAACATACATAAC\x94K\x8c\x8c\x10CGGGAATCTCCCATAC\x94K\x8d\x8c\x10CGGGGACAAGATTGTA\x94K\x8e\x8c\x10CGGTCGGGACTCATCT\x94K\x8f\x8c\x10CGTACAGTGTAATCGA\x94K\x90\x8c\x10CGTACGTATGTCCCAG\x94K\x91\x8c\x10CGTGACCCCCTCCAAC\x94K\x92\x8c\x10CGTGTACCCTTCAGCA\x94K\x93\x8c\x10CGTTAACGGCCTATCC\x94K\x94\x8c\x10CGTTCAGCGATAACGG\x94K\x95\x8c\x10CGTTTTTGGTTCGAGG\x94K\x96\x8c\x10CTAATTTAAGTATCAA\x94K\x97\x8c\x10CTAGCACAGCGTAGGC\x94K\x98\x8c\x10CTATAAACCGTTTGTA\x94K\x99\x8c\x10CTATATTGCCCGGAAG\x94K\x9a\x8c\x10CTATCTTAATCTACAG\x94K\x9b\x8c\x10CTATTTAACAGACGTA\x94K\x9c\x8c\x10CTCAAATAATTGGCGC\x94K\x9d\x8c\x10CTCAATGTCGTAGGAT\x94K\x9e\x8c\x10CTCCTAGGGGACGATT\x94K\x9f\x8c\x10CTCTTACGCTCCTACG\x94K\xa0\x8c\x10CTGAACTTATCTGTGG\x94K\xa1\x8c\x10CTGAACTTGTCGATAT\x94K\xa2\x8c\x10CTGAGCTGCCAATAAG\x94K\xa3\x8c\x10CTGAGGGATTCAACTC\x94K\xa4\x8c\x10CTGGAGGCCTGGCCCC\x94K\xa5\x8c\x10CTGTACCTGCAGTTGA\x94K\xa6\x8c\x10CTTACAGAATACTAGA\x94K\xa7\x8c\x10CTTACTGCGCGAGAGT\x94K\xa8\x8c\x10CTTAGGTATTATATGC\x94K\xa9\x8c\x10CTTCGGCTCTTGATTA\x94K\xaa\x8c\x10CTTTTCTAGTACGCTT\x94K\xab\x8c\x10GAAAGCCCCGTGCAAT\x94K\xac\x8c\x10GAAAGTCCCTATGATG\x94K\xad\x8c\x10GAAATCCCCAAATAAC\x94K\xae\x8c\x10GAAGAAACTATAACCA\x94K\xaf\x8c\x10GAAGTACGCTGAATGA\x94K\xb0\x8c\x10GAAGTGCGTATTGAGT\x94K\xb1\x8c\x10GAAGTGCTGCTGAAGT\x94K\xb2\x8c\x10GAATAATAGAACAGAG\x94K\xb3\x8c\x10GACAAAAGGGACATAT\x94K\xb4\x8c\x10GACCCCTTGTAAGATG\x94K\xb5\x8c\x10GACGGGATGGGCACGT\x94K\xb6\x8c\x10GAGAGCTGCAGAAGCG\x94K\xb7\x8c\x10GAGCTTGCTATGGATC\x94K\xb8\x8c\x10GAGGGGATACGTCACC\x94K\xb9\x8c\x10GAGGGGTAGAGATACG\x94K\xba\x8c\x10GATCACGCAGAAAAAG\x94K\xbb\x8c\x10GATCGCCACTGATAAG\x94K\xbc\x8c\x10GATCGCCATCGACTTC\x94K\xbd\x8c\x10GATCTTGGGGAGAGTC\x94K\xbe\x8c\x10GATTCAGATGCCCACC\x94K\xbf\x8c\x10GCAAACAGTGTAGTTG\x94K\xc0\x8c\x10GCAACGAGGTGTAACC\x94K\xc1\x8c\x10GCAGCGTGCCGGTCAT\x94K\xc2\x8c\x10GCATCCTCAACTCCTA\x94K\xc3\x8c\x10GCATGGAACTAACTCC\x94K\xc4\x8c\x10GCCAGCTCGTATCCCT\x94K\xc5\x8c\x10GCCATTTACTGAAGGG\x94K\xc6\x8c\x10GCCGCTGCGGCGTGTG\x94K\xc7\x8c\x10GCCGGCGTTAGTGTCA\x94K\xc8\x8c\x10GCCTTTGCGCGCAGTC\x94K\xc9\x8c\x10GCGAAGTTTCATAGCG\x94K\xca\x8c\x10GGTTAACTTTGGAAGC\x94K\xcb\x8c\x10GTAAGCAAAGTTGACC\x94K\xcc\x8c\x10GTAAGCTTCATGGAGT\x94K\xcd\x8c\x10GTAATTCGCATGCGGA\x94K\xce\x8c\x10GTACCCAGTTCCTGCG\x94K\xcf\x8c\x10GTAGAACTGCGGCCCC\x94K\xd0\x8c\x10GTAGATACTAGGACCA\x94K\xd1\x8c\x10GTCAAGTTACGGATGG\x94K\xd2\x8c\x10GTCCGTCAGCATAAAC\x94K\xd3\x8c\x10GTCGCATCCTGGAATG\x94K\xd4\x8c\x10GTCGCCGCTAATCCGA\x94K\xd5\x8c\x10GTGAGCGAGAAAAGCA\x94K\xd6\x8c\x10GTGCATCCTAGTGACG\x94K\xd7\x8c\x10GTGCGATTGTCCGGAA\x94K\xd8\x8c\x10GTGGTATCAAGCCGGG\x94K\xd9\x8c\x10GTTATTATGACTTCAT\x94K\xda\x8c\x10GTTGCTCCGACACGCC\x94K\xdb\x8c\x10TAAAAAGCCTCCATGA\x94K\xdc\x8c\x10TAACGTGATTTCTCGA\x94K\xdd\x8c\x10TAATAAGCCAGCAAGA\x94K\xde\x8c\x10TACAAGAGAGGGGTCC\x94K\xdf\x8c\x10TACATACCGACGCAGT\x94K\xe0\x8c\x10TACCAATGTCATTTGA\x94K\xe1\x8c\x10TACCTGCTGCGGAACG\x94K\xe2\x8c\x10TACTAATGCCGTTGTC\x94K\xe3\x8c\x10TACTAGCAATAAAATC\x94K\xe4\x8c\x10TACTGATAACCCTGCG\x94K\xe5\x8c\x10TAGCATTGTCGGAAAG\x94K\xe6\x8c\x10TAGCTGATAGTAACTC\x94K\xe7\x8c\x10TATATTAGTAACATAA\x94K\xe8\x8c\x10TATCCAAGGGACGGAC\x94K\xe9\x8c\x10TATGTCGTATCCACAG\x94K\xea\x8c\x10TATTAAGAGAAGTGCG\x94K\xeb\x8c\x10TATTCCTAACTAGCGA\x94K\xec\x8c\x10TCAATCGGGGGCTAAA\x94K\xed\x8c\x10TCACGACTCGACTAAC\x94K\xee\x8c\x10TCATGGGTGTACGAGA\x94K\xef\x8c\x10TCCACACCCCTAGCTA\x94K\xf0\x8c\x10TCCAGCGCGGTAAGAG\x94K\xf1\x8c\x10TCCCCGTGGTTTGACA\x94K\xf2\x8c\x10TCGAACGAAGTAGGAG\x94K\xf3\x8c\x10TCGAGTTAATATGCGC\x94K\xf4\x8c\x10TCGATTACTAGCCGGA\x94K\xf5\x8c\x10TCGCTTCAACTAAAAA\x94K\xf6\x8c\x10TCGTCCGTTGGGAACT\x94K\xf7\x8c\x10TCGTCGCACTACTGCT\x94K\xf8\x8c\x10TCTAACTCTCGCGGCA\x94K\xf9\x8c\x10TCTCAGCTCTTAGCCG\x94K\xfa\x8c\x10TCTGGAAACGATCCCC\x94K\xfb\x8c\x10TCTTAGAGTGAACGAT\x94K\xfc\x8c\x10TCTTAGTCCTCGTATG\x94K\xfd\x8c\x10TCTTATTAGGCGGCAT\x94K\xfe\x8c\x10TCTTGACATAGCGATG\x94K\xff\x8c\x10TCTTTACCACTGCATC\x94M\x00\x01\x8c\x10TGACAACAATACAAAT\x94M\x01\x01\x8c\x10TGAGTTCATAGCTCCA\x94M\x02\x01\x8c\x10TGATCTGTGACATTGC\x94M\x03\x01\x8c\x10TGATCTTTTACATTTA\x94M\x04\x01\x8c\x10TGCAGTGGTATACATA\x94M\x05\x01\x8c\x10TGCGGTGGTCGATCCG\x94M\x06\x01\x8c\x10TGCTATTCCGGCGCGG\x94M\x07\x01\x8c\x10TGGAATCGTCACCGAT\x94M\x08\x01\x8c\x10TGGTCCGCTTCATGCT\x94M\t\x01\x8c\x10TGTAATAGGCGTCACA\x94M\n\x01\x8c\x10TGTCCGGATAAAGTAG\x94M\x0b\x01\x8c\x10TGTGGAGCGCCCTTAC\x94M\x0c\x01\x8c\x10TGTTGAGCCAGTCTGA\x94M\r\x01\x8c\x10TGTTGTAATCTGAATA\x94M\x0e\x01\x8c\x10TTAATGTAGCCGCTCC\x94M\x0f\x01\x8c\x10TTACGAATTTGATTCC\x94M\x10\x01\x8c\x10TTCATCAAGTTGGTGC\x94M\x11\x01\x8c\x10TTCTGTCCAGACTCGT\x94M\x12\x01\x8c\x10TTGAAAAAATCATAAA\x94M\x13\x01\x8c\x10TTGACTCACCGAATAA\x94M\x14\x01\x8c\x10TTGCAATTGAAACATA\x94M\x15\x01\x8c\x10TTGCTCCTGAGTAGTA\x94M\x16\x01\x8c\x10TTGGGCACTAAATTAA\x94M\x17\x01\x8c\x10TTGGGGAACGGGAAGC\x94M\x18\x01\x8c\x10TTGTATCAGTCGCGCC\x94M\x19\x01\x8c\x10TTTATATCCAACACCA\x94M\x1a\x01\x8c\x10TTTATATCGAGATTCA\x94M\x1b\x01\x8c\x10TTTCACAGAACCTATC\x94M\x1c\x01\x8c\x10TTTCAGCGTTGTTTTG\x94M\x1d\x01\x8c\x10TTTCGTGATACTCACA\x94u\x8c\x06strain\x94}\x94(K\x00\x8c\x19A/Minnesota/126/2024_H3N2\x94K\x01\x8c*A/Singapore/INFIMH-16-0019/2016X-307A_H3N2\x94K\x02\x8c\x18A/Wisconsin/67/2022_H1N1\x94K\x03\x8c\x16A/Lisboa/216/2023_H3N2\x94K\x04\x8c\x14A/Darwin/9/2021_H3N2\x94K\x05\x8c A/Cambodia/e0826360/2020egg_H3N2\x94K\x06\x8c\x15A/Busan/277/2025_H1N1\x94K\x07\x8c"A/New_York/GKISBBBE61555/2025_H3N2\x94K\x08\x8c\x15A/Kansas/14/2017_H3N2\x94K\t\x8c\x14A/Texas/50/2012_H3N2\x94K\n\x8c"A/Wisconsin/NIRC-IS-1028/2024_H3N2\x94K\x0b\x8c\x1aA/Washington/284/2024_H3N2\x94K\x0c\x8c\x16A/Oregon/265/2024_H3N2\x94K\r\x8c\x17A/Victoria/46/2024_H3N2\x94K\x0e\x8c\x16A/Vermont/13/2025_H3N2\x94K\x0f\x8c\x16A/Indiana/46/2024_H3N2\x94K\x10\x8c!A/DistrictOfColumbia/27/2023_H3N2\x94K\x11\x8c\x18A/Tasmania/836/2024_H3N2\x94K\x12\x8c\x19A/Colombia/1851/2024_H3N2\x94K\x13\x8c\x19A/Victoria/3482/2024_H3N2\x94K\x14\x8c\x1cA/BurkinaFaso/3131/2023_H3N2\x94K\x15\x8c\x13A/Utah/39/2025_H1N1\x94K\x16\x8c\x19A/HongKong/4801/2014_H3N2\x94K\x17\x8c!A/Victoria/4897/2022_IVR-238_H1N1\x94K\x18\x8c\x1aA/Texas/ISC-1274/2025_H3N2\x94K\x19\x8c\x17A/Slovenia/49/2024_H3N2\x94K\x1ajH\x02\x00\x00K\x1b\x8c\x14A/Iowa/123/2024_H1N1\x94K\x1c\x8c\x1fA/Uganda/UVRI_KIS6850_2024_H1N1\x94K\x1d\x8c\x17A/Michigan/45/2015_H1N1\x94K\x1e\x8c\x17A/Victoria/96/2025_H3N2\x94K\x1f\x8c&A/Massachusetts/BI_MGH-23147/2025_H3N2\x94K jI\x02\x00\x00K!\x8c\x19A/Victoria/3599/2024_H1N1\x94K"\x8c\x18A/Tennessee/04/2025_H1N1\x94K#\x8c\x1fA/Queensland/IN000692/2024_H3N2\x94K$\x8c#A/Michigan/UM-10062100736/2025_H3N2\x94K%\x8c\x16A/Lisboa/188/2023_H1N1\x94K&\x8c\x1aA/Texas/ISC-1148/2025_H3N2\x94K\'\x8c"A/Massachusetts/ISC-1679/2025_H1N1\x94K(j<\x02\x00\x00K)\x8c\x1aA/Texas/50/2012X-223A_H3N2\x94K*\x8c#A/France/IDF-IPP29542/2023-egg_H3N2\x94K+\x8c$A/Switzerland/860423897313/2023_H3N2\x94K,\x8c\x14A/Ohio/259/2024_H1N1\x94K-\x8c\x1eA/Punta_Arenas/83659/2024_H3N2\x94K.\x8c\x1cA/Pennsylvania/288/2024_H3N2\x94K/\x8c\x1dA/Colorado/ISC-1416/2024_H3N2\x94K0\x8c,A/France/PAC-RELAB-HCL024172122101/2024_H3N2\x94K1\x8c\x1aA/Texas/ISC-1342/2025_H3N2\x94K2\x8c\x16A/Thailand/8/2022_H3N2\x94K3\x8c A/Saskatchewan/RV04835/2024_H3N2\x94K4jF\x02\x00\x00K5\x8c\x18A/Bangkok/P176/2025_H1N1\x94K6\x8c"A/Wisconsin/NIRC-IS-1111/2025_H1N1\x94K7\x8c#A/Sao_Paulo/358026766-IAL/2024_H3N2\x94K8\x8c\x1eA/Rhode_Island/15446/2025_H3N2\x94K9\x8c!A/India/Pune-NIV24_3439/2024_H3N2\x94K:\x8c\x18A/Minnesota/97/2024_H3N2\x94K;jR\x02\x00\x00K<\x8c\x1fA/Switzerland/9715293/2013_H3N2\x94K=j1\x02\x00\x00K>\x8c#A/Saint-Petersburg/RII-04/2025_H1N1\x94K?\x8c\x1dA/Switzerland/47775/2024_H3N2\x94K@\x8c\x19A/Victoria/3480/2024_H3N2\x94KAjJ\x02\x00\x00KB\x8c\x15A/Hawaii/70/2019_H1N1\x94KC\x8c\x1bA/Rhode_Island/66/2024_H3N2\x94KD\x8c\x19A/Wisconsin/588/2019_H1N1\x94KE\x8c\x1cA/Ghana/FS-25-0256/2025_H3N2\x94KF\x8c\x18A/Ecuador/1385/2024_H3N2\x94KGjZ\x02\x00\x00KHj8\x02\x00\x00KI\x8c\x1cA/Amapa/021563-IEC/2024_H3N2\x94KJ\x8c\x1aA/Zacapa/FLU-012/2025_H1N1\x94KKj4\x02\x00\x00KLj`\x02\x00\x00KM\x8c%A/Shanghai-Huangpu/SWL12109/2024_H1N1\x94KN\x8c\x16A/Nevada/216/2024_H3N2\x94KOjU\x02\x00\x00KPjj\x02\x00\x00KQ\x8c%A/Switzerland/9715293/2013NIB-88_H3N2\x94KR\x8c\x15A/Sydney/43/2025_H3N2\x94KS\x8c\x18A/Pakistan/306/2024_H1N1\x94KT\x8c\x17A/Brisbane/02/2018_H1N1\x94KU\x8c\x13A/Utah/94/2024_H3N2\x94KVjT\x02\x00\x00KWj5\x02\x00\x00KX\x8c\x1dA/Cambodia/e0826360/2020_H3N2\x94KY\x8c\x1cA/Manitoba/RV04865/2024_H3N2\x94KZjd\x02\x00\x00K[\x8c\x13A/Utah/87/2024_H3N2\x94K\\\x8c\x18A/Wisconsin/30/2025_H1N1\x94K]\x8c\x1cA/HongKong/4801/2014egg_H3N2\x94K^jE\x02\x00\x00K_j3\x02\x00\x00K`\x8c\x1fA/France/BRE-IPP01880/2025_H3N2\x94Kaj_\x02\x00\x00Kb\x8c\x14A/Darwin/6/2021_H3N2\x94Kcj|\x02\x00\x00Kd\x8c\x1bA/Santiago/101713/2024_H1N1\x94Keje\x02\x00\x00KfjB\x02\x00\x00KgjK\x02\x00\x00KhjX\x02\x00\x00Ki\x8c\x1bA/Hawaii/ISC-1140/2025_H1N1\x94Kjj\x7f\x02\x00\x00Kkjh\x02\x00\x00Klj0\x02\x00\x00Km\x8c\x18A/Tennessee/99/2024_H3N2\x94Knj^\x02\x00\x00KojG\x02\x00\x00Kpjk\x02\x00\x00Kq\x8c\x17A/Qatar/83328/2024_H1N1\x94Kr\x8c\x1cA/Massachusetts/18/2022_H3N2\x94Ks\x8c\x18A/Michigan/120/2024_H3N2\x94Kt\x8c\x19A/Minnesota/131/2024_H1N1\x94Kuj:\x02\x00\x00Kv\x8c\x1fA/Washington/UW-25728/2024_H3N2\x94Kw\x8c\x19A/Colombia/7681/2024_H3N2\x94Kx\x8c\x15A/Busan/461/2025_H3N2\x94Ky\x8c\x1dA/CoteD\'Ivoire/4448/2024_H3N2\x94Kz\x8c\x19A/Maldives/2186/2024_H3N2\x94K{\x8c\x19A/Maldives/2147/2024_H3N2\x94K|\x8c\x1bA/KANAGAWA/AC2408/2025_H1N1\x94K}\x8c\x1cA/Washington/15245/2025_H3N2\x94K~j=\x02\x00\x00K\x7f\x8c\x19A/California/07/2009_H1N1\x94K\x80\x8c\x19A/HongKong/2671/2019_H3N2\x94K\x81\x8c\x16A/Vermont/05/2025_H1N1\x94K\x82\x8c\x17A/New_York/39/2025_H3N2\x94K\x83\x8c\x17A/Ufa/CRIE/47/2024_H1N1\x94K\x84j\x83\x02\x00\x00K\x85j}\x02\x00\x00K\x86\x8c\x1fA/Queensland/IN000803/2024_H3N2\x94K\x87\x8c\x18A/Colorado/218/2024_H1N1\x94K\x88jn\x02\x00\x00K\x89jc\x02\x00\x00K\x8ajs\x02\x00\x00K\x8bjM\x02\x00\x00K\x8cj\x8f\x02\x00\x00K\x8d\x8c\x17A/HongKong/45/2019_H3N2\x94K\x8ejw\x02\x00\x00K\x8f\x8c$A/Singapore/INFIMH-16-0019/2016_H3N2\x94K\x90j^\x02\x00\x00K\x91\x8c\x15A/Oregon/11/2025_H1N1\x94K\x92\x8c\x18A/Tasmania/790/2024_H3N2\x94K\x93j3\x02\x00\x00K\x94\x8c\x1aA/Texas/ISC-1322/2025_H3N2\x94K\x95jt\x02\x00\x00K\x96\x8c\x19A/Wisconsin/172/2024_H3N2\x94K\x97\x8c\x1cA/Massachusetts/93/2024_H3N2\x94K\x98j;\x02\x00\x00K\x99\x8c\x17A/Texas/15550/2024_H3N2\x94K\x9aj~\x02\x00\x00K\x9b\x8c\x18A/Tasmania/788/2024_H3N2\x94K\x9c\x8c\x16A/Oregon/261/2024_H1N1\x94K\x9d\x8c,A/France/ARA-RELAB-HCL025017178801/2025_H3N2\x94K\x9ej\x8d\x02\x00\x00K\x9f\x8c\x16A/Vermont/10/2025_H1N1\x94K\xa0\x8c#A/Michigan/UM-10062069629/2025_H3N2\x94K\xa1j1\x02\x00\x00K\xa2j\x84\x02\x00\x00K\xa3\x8c\x19A/Minnesota/133/2024_H3N2\x94K\xa4\x8c\x17A/Maryland/64/2024_H1N1\x94K\xa5j[\x02\x00\x00K\xa6\x8c\x1dA/Singapore/MOH0547/2024_H1N1\x94K\xa7\x8c%A/NovaScotia/ET1801CP00018S/2025_H1N1\x94K\xa8j2\x02\x00\x00K\xa9j\x98\x02\x00\x00K\xaajr\x02\x00\x00K\xabjV\x02\x00\x00K\xacj\x92\x02\x00\x00K\xad\x8c\x19A/Maldives/2132/2024_H1N1\x94K\xaejl\x02\x00\x00K\xafj\x8b\x02\x00\x00K\xb0j\x9a\x02\x00\x00K\xb1\x8c\x1fA/Croatia/10136RV/2023-egg_H3N2\x94K\xb2j?\x02\x00\x00K\xb3jO\x02\x00\x00K\xb4j\x97\x02\x00\x00K\xb5\x8c"A/Massachusetts/ISC-1684/2025_H3N2\x94K\xb6j\x9d\x02\x00\x00K\xb7\x8c\x1cA/Madagascar/00003/2025_H1N1\x94K\xb8\x8c\x19A/Tambov/160-1V/2024_H1N1\x94K\xb9\x8c\x1dA/Netherlands/01502/2025_H3N2\x94K\xbajq\x02\x00\x00K\xbbj\x87\x02\x00\x00K\xbcj\x91\x02\x00\x00K\xbd\x8c\x18A/New_York/191/2024_H3N2\x94K\xbe\x8c"A/Vladimir/RII-MH223382S/2024_H1N1\x94K\xbfj\x9f\x02\x00\x00K\xc0j7\x02\x00\x00K\xc1jL\x02\x00\x00K\xc2ji\x02\x00\x00K\xc3\x8c&A/Qinghai-Chengzhong/SWL1410/2024_H1N1\x94K\xc4j6\x02\x00\x00K\xc5\x8c"A/Mato_Grosso_do_Sul/518/2025_H3N2\x94K\xc6\x8c\x18A/Norway/12374/2023_H3N2\x94K\xc7j\xa4\x02\x00\x00K\xc8\x8c\x1cA/Badajoz/18680568/2025_H3N2\x94K\xc9j\x80\x02\x00\x00K\xcaj|\x02\x00\x00K\xcbj\xa2\x02\x00\x00K\xccjW\x02\x00\x00K\xcdj0\x02\x00\x00K\xcej\xa6\x02\x00\x00K\xcfjp\x02\x00\x00K\xd0jA\x02\x00\x00K\xd1j\x99\x02\x00\x00K\xd2jQ\x02\x00\x00K\xd3j\xb0\x02\x00\x00K\xd4j\xa7\x02\x00\x00K\xd5\x8c\x18A/Canberra/613/2024_H3N2\x94K\xd6j\x90\x02\x00\x00K\xd7jN\x02\x00\x00K\xd8jD\x02\x00\x00K\xd9j~\x02\x00\x00K\xda\x8c\x17A/Kentucky/57/2024_H3N2\x94K\xdbj\x95\x02\x00\x00K\xdc\x8c\x15A/Ulsan/492/2025_H1N1\x94K\xddjv\x02\x00\x00K\xdej\x85\x02\x00\x00K\xdfj/\x02\x00\x00K\xe0j\x96\x02\x00\x00K\xe1\x8c\x1dA/Netherlands/10563/2023_H3N2\x94K\xe2jC\x02\x00\x00K\xe3j\x96\x02\x00\x00K\xe4\x8c\x1eA/Santa_Catarina/333/2025_H3N2\x94K\xe5j\xb2\x02\x00\x00K\xe6j\xa9\x02\x00\x00K\xe7jl\x02\x00\x00K\xe8j\x95\x02\x00\x00K\xe9j\x93\x02\x00\x00K\xea\x8c\x17A/Illinois/65/2024_H1N1\x94K\xebjb\x02\x00\x00K\xecj9\x02\x00\x00K\xedj\x9b\x02\x00\x00K\xeej\xa1\x02\x00\x00K\xefj\x83\x02\x00\x00K\xf0jP\x02\x00\x00K\xf1jU\x02\x00\x00K\xf2j\x9e\x02\x00\x00K\xf3j\xb4\x02\x00\x00K\xf4jf\x02\x00\x00K\xf5j\xb7\x02\x00\x00K\xf6j\xb3\x02\x00\x00K\xf7j\xb6\x02\x00\x00K\xf8j\x8c\x02\x00\x00K\xf9jS\x02\x00\x00K\xfaj]\x02\x00\x00K\xfbjE\x02\x00\x00K\xfcj\xa0\x02\x00\x00K\xfdj\x8a\x02\x00\x00K\xfejg\x02\x00\x00K\xffj\xaa\x02\x00\x00M\x00\x01jy\x02\x00\x00M\x01\x01j8\x02\x00\x00M\x02\x01j\xa8\x02\x00\x00M\x03\x01j\xb5\x02\x00\x00M\x04\x01j\xa5\x02\x00\x00M\x05\x01\x8c\x1bA/TOKYO/EIS11-277/2024_H1N1\x94M\x06\x01j\x82\x02\x00\x00M\x07\x01jj\x02\x00\x00M\x08\x01\x8c!A/DE/DE-DHSS-901/2025_(H3N2)_H3N2\x94M\t\x01j\x86\x02\x00\x00M\n\x01j\xb8\x02\x00\x00M\x0b\x01j\x81\x02\x00\x00M\x0c\x01ju\x02\x00\x00M\r\x01j4\x02\x00\x00M\x0e\x01ja\x02\x00\x00M\x0f\x01jY\x02\x00\x00M\x10\x01j\x8f\x02\x00\x00M\x11\x01j\xab\x02\x00\x00M\x12\x01jK\x02\x00\x00M\x13\x01jx\x02\x00\x00M\x14\x01jx\x02\x00\x00M\x15\x01j>\x02\x00\x00M\x16\x01jv\x02\x00\x00M\x17\x01\x8c\x1cA/Florida/ISC-1241/2025_H3N2\x94M\x18\x01jo\x02\x00\x00M\x19\x01j\xaf\x02\x00\x00M\x1a\x01j\xad\x02\x00\x00M\x1b\x01j\xb1\x02\x00\x00M\x1c\x01j@\x02\x00\x00M\x1d\x01j\xb9\x02\x00\x00uu}\x94\x8c\x07barcode\x94}\x94(K\x00\x8c\x10AAAAAATTTATGACAA\x94K\x01\x8c\x10AACCACCGAGTGACCG\x94K\x02\x8c\x10AACGACAAACAGTAAG\x94K\x03\x8c\x10CAATTAGAAATACATA\x94K\x04\x8c\x10CATACAGAGTTTGTTG\x94K\x05\x8c\x10CTTTAAATTATAGTCT\x94K\x06\x8c\x10GTACAAACCTGCAAAT\x94K\x07\x8c\x10TACCCTGCAAGCCACT\x94K\x08\x8c\x10TTATCTGTAGAGCGCT\x94us]\x94(\x8c\x13plate14_EPIHK_21_40\x94\x8c\x13plate14_EPIHK_21_92\x94\x8c\x14plate14_EPIHK_21_212\x94\x8c\x14plate14_EPIHK_21_487\x94\x8c\x15plate14_EPIHK_21_1119\x94\x8c\x15plate14_EPIHK_21_2575\x94\x8c\x15plate14_EPIHK_21_5921\x94\x8c\x16plate14_EPIHK_21_13619\x94\x8c\x13plate14_EPIHK_22_40\x94\x8c\x13plate14_EPIHK_22_92\x94\x8c\x14plate14_EPIHK_22_212\x94\x8c\x14plate14_EPIHK_22_487\x94\x8c\x15plate14_EPIHK_22_1119\x94\x8c\x15plate14_EPIHK_22_2575\x94\x8c\x15plate14_EPIHK_22_5921\x94\x8c\x16plate14_EPIHK_22_13619\x94\x8c\x13plate14_EPIHK_23_40\x94\x8c\x13plate14_EPIHK_23_92\x94\x8c\x14plate14_EPIHK_23_212\x94\x8c\x14plate14_EPIHK_23_487\x94\x8c\x15plate14_EPIHK_23_1119\x94\x8c\x15plate14_EPIHK_23_2575\x94\x8c\x15plate14_EPIHK_23_5921\x94\x8c\x16plate14_EPIHK_23_13619\x94\x8c\x13plate14_EPIHK_24_40\x94\x8c\x13plate14_EPIHK_24_92\x94\x8c\x14plate14_EPIHK_24_212\x94\x8c\x14plate14_EPIHK_24_487\x94\x8c\x15plate14_EPIHK_24_1119\x94\x8c\x15plate14_EPIHK_24_2575\x94\x8c\x15plate14_EPIHK_24_5921\x94\x8c\x16plate14_EPIHK_24_13619\x94\x8c\x13plate14_EPIHK_25_40\x94\x8c\x13plate14_EPIHK_25_92\x94\x8c\x14plate14_EPIHK_25_212\x94\x8c\x14plate14_EPIHK_25_487\x94\x8c\x15plate14_EPIHK_25_1119\x94\x8c\x15plate14_EPIHK_25_2575\x94\x8c\x15plate14_EPIHK_25_5921\x94\x8c\x16plate14_EPIHK_25_13619\x94\x8c\x13plate14_EPIHK_26_40\x94\x8c\x13plate14_EPIHK_26_92\x94\x8c\x14plate14_EPIHK_26_212\x94\x8c\x14plate14_EPIHK_26_487\x94\x8c\x15plate14_EPIHK_26_1119\x94\x8c\x15plate14_EPIHK_26_2575\x94\x8c\x15plate14_EPIHK_26_5921\x94\x8c\x16plate14_EPIHK_26_13619\x94\x8c\x13plate14_EPIHK_27_40\x94\x8c\x13plate14_EPIHK_27_92\x94\x8c\x14plate14_EPIHK_27_212\x94\x8c\x14plate14_EPIHK_27_487\x94\x8c\x15plate14_EPIHK_27_1119\x94\x8c\x15plate14_EPIHK_27_2575\x94\x8c\x15plate14_EPIHK_27_5921\x94\x8c\x16plate14_EPIHK_27_13619\x94\x8c\x13plate14_EPIHK_28_40\x94\x8c\x13plate14_EPIHK_28_92\x94\x8c\x14plate14_EPIHK_28_212\x94\x8c\x14plate14_EPIHK_28_487\x94\x8c\x15plate14_EPIHK_28_1119\x94\x8c\x15plate14_EPIHK_28_2575\x94\x8c\x15plate14_EPIHK_28_5921\x94\x8c\x16plate14_EPIHK_28_13619\x94\x8c\x13plate14_EPIHK_29_40\x94\x8c\x13plate14_EPIHK_29_92\x94\x8c\x14plate14_EPIHK_29_212\x94\x8c\x14plate14_EPIHK_29_487\x94\x8c\x15plate14_EPIHK_29_1119\x94\x8c\x15plate14_EPIHK_29_2575\x94\x8c\x15plate14_EPIHK_29_5921\x94\x8c\x16plate14_EPIHK_29_13619\x94\x8c\x13plate14_EPIHK_30_40\x94\x8c\x13plate14_EPIHK_30_92\x94\x8c\x14plate14_EPIHK_30_212\x94\x8c\x14plate14_EPIHK_30_487\x94\x8c\x15plate14_EPIHK_30_1119\x94\x8c\x15plate14_EPIHK_30_2575\x94\x8c\x15plate14_EPIHK_30_5921\x94\x8c\x16plate14_EPIHK_30_13619\x94\x8c\x13plate14_EPIHK_31_40\x94\x8c\x13plate14_EPIHK_31_92\x94\x8c\x14plate14_EPIHK_31_212\x94\x8c\x14plate14_EPIHK_31_487\x94\x8c\x15plate14_EPIHK_31_1119\x94\x8c\x15plate14_EPIHK_31_2575\x94\x8c\x15plate14_EPIHK_31_5921\x94\x8c\x16plate14_EPIHK_31_13619\x94\x8c\x0eplate14_none-1\x94\x8c\x0eplate14_none-2\x94\x8c\x0eplate14_none-3\x94\x8c\x0eplate14_none-4\x94\x8c\x0eplate14_none-5\x94\x8c\x0eplate14_none-6\x94\x8c\x0eplate14_none-7\x94\x8c\x0eplate14_none-8\x94e}\x94(\x8c\x05group\x94\x8c\x05EPIHK\x94\x8c\x04date\x94\x8c\n2025-08-18\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c"data/plates/2025-08-18_plate14.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(\x8c\x1bavg_barcode_counts_per_well\x94M\xf4\x01\x8c\x1fmin_neut_standard_frac_per_well\x94G?tz\xe1G\xae\x14{\x8c"no_serum_per_viral_barcode_filters\x94}\x94(\x8c\x08min_frac\x94G?\x1a6\xe2\xeb\x1cC-\x8c\x0fmax_fold_change\x94K\x04\x8c\tmax_wells\x94K\x02u\x8c!per_neut_standard_barcode_filters\x94}\x94(\x8c\x08min_frac\x94G?tz\xe1G\xae\x14{\x8c\x0fmax_fold_change\x94K\x04\x8c\tmax_wells\x94K\x02u\x8c min_neut_standard_count_per_well\x94M\xe8\x03\x8c)min_no_serum_count_per_viral_barcode_well\x94Kd\x8c+max_frac_infectivity_per_viral_barcode_well\x94K\x03\x8c)min_dilutions_per_barcode_serum_replicate\x94K\x06u\x8c\x0fcurvefit_params\x94}\x94(\x8c\x18frac_infectivity_ceiling\x94K\x01\x8c\x06fixtop\x94]\x94(G?\xe3333333K\x01e\x8c\tfixbottom\x94K\x00\x8c\x08fixslope\x94]\x94(G?\xe9\x99\x99\x99\x99\x99\x9aK\neu\x8c\x0bcurvefit_qc\x94}\x94(\x8c\x1dmax_frac_infectivity_at_least\x94G\x00\x00\x00\x00\x00\x00\x00\x00\x8c\x0fgoodness_of_fit\x94}\x94(\x8c\x06min_R2\x94G?\xe0\x00\x00\x00\x00\x00\x00\x8c\x08max_RMSD\x94G?\xc3333333u\x8c#serum_replicates_ignore_curvefit_qc\x94]\x94\x8c+barcode_serum_replicates_ignore_curvefit_qc\x94]\x94u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\x08upstream\x94\x8c\x1cCCTACAATGTCGGATTTGTATTTAATAG\x94\x8c\ndownstream\x94\x8c\x00\x94\x8c\x04minq\x94K\x14\x8c\x11upstream_mismatch\x94K\x04\x8c\x0ebc_orientation\x94\x8c\x02R2\x94\x8c\tupstream2\x94\x8c\x06ATCGAT\x94\x8c\x12upstream2_mismatch\x94K\x01u\x8c\x07samples\x94}\x94(\x8c\x04well\x94}\x94(K\x00\x8c\x02A1\x94K\x01\x8c\x02B1\x94K\x02\x8c\x02C1\x94K\x03\x8c\x02D1\x94K\x04\x8c\x02E1\x94K\x05\x8c\x02F1\x94K\x06\x8c\x02G1\x94K\x07\x8c\x02H1\x94K\x08\x8c\x02A2\x94K\t\x8c\x02B2\x94K\n\x8c\x02C2\x94K\x0b\x8c\x02D2\x94K\x0c\x8c\x02E2\x94K\r\x8c\x02F2\x94K\x0e\x8c\x02G2\x94K\x0f\x8c\x02H2\x94K\x10\x8c\x02A3\x94K\x11\x8c\x02B3\x94K\x12\x8c\x02C3\x94K\x13\x8c\x02D3\x94K\x14\x8c\x02E3\x94K\x15\x8c\x02F3\x94K\x16\x8c\x02G3\x94K\x17\x8c\x02H3\x94K\x18\x8c\x02A4\x94K\x19\x8c\x02B4\x94K\x1a\x8c\x02C4\x94K\x1b\x8c\x02D4\x94K\x1c\x8c\x02E4\x94K\x1d\x8c\x02F4\x94K\x1e\x8c\x02G4\x94K\x1f\x8c\x02H4\x94K \x8c\x02A5\x94K!\x8c\x02B5\x94K"\x8c\x02C5\x94K#\x8c\x02D5\x94K$\x8c\x02E5\x94K%\x8c\x02F5\x94K&\x8c\x02G5\x94K\'\x8c\x02H5\x94K(\x8c\x02A6\x94K)\x8c\x02B6\x94K*\x8c\x02C6\x94K+\x8c\x02D6\x94K,\x8c\x02E6\x94K-\x8c\x02F6\x94K.\x8c\x02G6\x94K/\x8c\x02H6\x94K0\x8c\x02A7\x94K1\x8c\x02B7\x94K2\x8c\x02C7\x94K3\x8c\x02D7\x94K4\x8c\x02E7\x94K5\x8c\x02F7\x94K6\x8c\x02G7\x94K7\x8c\x02H7\x94K8\x8c\x02A8\x94K9\x8c\x02B8\x94K:\x8c\x02C8\x94K;\x8c\x02D8\x94K<\x8c\x02E8\x94K=\x8c\x02F8\x94K>\x8c\x02G8\x94K?\x8c\x02H8\x94K@\x8c\x02A9\x94KA\x8c\x02B9\x94KB\x8c\x02C9\x94KC\x8c\x02D9\x94KD\x8c\x02E9\x94KE\x8c\x02F9\x94KF\x8c\x02G9\x94KG\x8c\x02H9\x94KH\x8c\x03A10\x94KI\x8c\x03B10\x94KJ\x8c\x03C10\x94KK\x8c\x03D10\x94KL\x8c\x03E10\x94KM\x8c\x03F10\x94KN\x8c\x03G10\x94KO\x8c\x03H10\x94KP\x8c\x03A11\x94KQ\x8c\x03B11\x94KR\x8c\x03C11\x94KS\x8c\x03D11\x94KT\x8c\x03E11\x94KU\x8c\x03F11\x94KV\x8c\x03G11\x94KW\x8c\x03H11\x94KX\x8c\x03A12\x94KY\x8c\x03B12\x94KZ\x8c\x03C12\x94K[\x8c\x03D12\x94K\\\x8c\x03E12\x94K]\x8c\x03F12\x94K^\x8c\x03G12\x94K_\x8c\x03H12\x94u\x8c\x05serum\x94}\x94(K\x00\x8c\x08EPIHK_21\x94K\x01j\xcd\x03\x00\x00K\x02j\xcd\x03\x00\x00K\x03j\xcd\x03\x00\x00K\x04j\xcd\x03\x00\x00K\x05j\xcd\x03\x00\x00K\x06j\xcd\x03\x00\x00K\x07j\xcd\x03\x00\x00K\x08\x8c\x08EPIHK_22\x94K\tj\xce\x03\x00\x00K\nj\xce\x03\x00\x00K\x0bj\xce\x03\x00\x00K\x0cj\xce\x03\x00\x00K\rj\xce\x03\x00\x00K\x0ej\xce\x03\x00\x00K\x0fj\xce\x03\x00\x00K\x10\x8c\x08EPIHK_23\x94K\x11j\xcf\x03\x00\x00K\x12j\xcf\x03\x00\x00K\x13j\xcf\x03\x00\x00K\x14j\xcf\x03\x00\x00K\x15j\xcf\x03\x00\x00K\x16j\xcf\x03\x00\x00K\x17j\xcf\x03\x00\x00K\x18\x8c\x08EPIHK_24\x94K\x19j\xd0\x03\x00\x00K\x1aj\xd0\x03\x00\x00K\x1bj\xd0\x03\x00\x00K\x1cj\xd0\x03\x00\x00K\x1dj\xd0\x03\x00\x00K\x1ej\xd0\x03\x00\x00K\x1fj\xd0\x03\x00\x00K \x8c\x08EPIHK_25\x94K!j\xd1\x03\x00\x00K"j\xd1\x03\x00\x00K#j\xd1\x03\x00\x00K$j\xd1\x03\x00\x00K%j\xd1\x03\x00\x00K&j\xd1\x03\x00\x00K\'j\xd1\x03\x00\x00K(\x8c\x08EPIHK_26\x94K)j\xd2\x03\x00\x00K*j\xd2\x03\x00\x00K+j\xd2\x03\x00\x00K,j\xd2\x03\x00\x00K-j\xd2\x03\x00\x00K.j\xd2\x03\x00\x00K/j\xd2\x03\x00\x00K0\x8c\x08EPIHK_27\x94K1j\xd3\x03\x00\x00K2j\xd3\x03\x00\x00K3j\xd3\x03\x00\x00K4j\xd3\x03\x00\x00K5j\xd3\x03\x00\x00K6j\xd3\x03\x00\x00K7j\xd3\x03\x00\x00K8\x8c\x08EPIHK_28\x94K9j\xd4\x03\x00\x00K:j\xd4\x03\x00\x00K;j\xd4\x03\x00\x00K<j\xd4\x03\x00\x00K=j\xd4\x03\x00\x00K>j\xd4\x03\x00\x00K?j\xd4\x03\x00\x00K@\x8c\x08EPIHK_29\x94KAj\xd5\x03\x00\x00KBj\xd5\x03\x00\x00KCj\xd5\x03\x00\x00KDj\xd5\x03\x00\x00KEj\xd5\x03\x00\x00KFj\xd5\x03\x00\x00KGj\xd5\x03\x00\x00KH\x8c\x08EPIHK_30\x94KIj\xd6\x03\x00\x00KJj\xd6\x03\x00\x00KKj\xd6\x03\x00\x00KLj\xd6\x03\x00\x00KMj\xd6\x03\x00\x00KNj\xd6\x03\x00\x00KOj\xd6\x03\x00\x00KP\x8c\x08EPIHK_31\x94KQj\xd7\x03\x00\x00KRj\xd7\x03\x00\x00KSj\xd7\x03\x00\x00KTj\xd7\x03\x00\x00KUj\xd7\x03\x00\x00KVj\xd7\x03\x00\x00KWj\xd7\x03\x00\x00KX\x8c\x04none\x94KYj\xd8\x03\x00\x00KZj\xd8\x03\x00\x00K[j\xd8\x03\x00\x00K\\j\xd8\x03\x00\x00K]j\xd8\x03\x00\x00K^j\xd8\x03\x00\x00K_j\xd8\x03\x00\x00u\x8c\x0fdilution_factor\x94}\x94(K\x00K(K\x01K\\K\x02K\xd4K\x03M\xe7\x01K\x04M_\x04K\x05M\x0f\nK\x06M!\x17K\x07M35K\x08K(K\tK\\K\nK\xd4K\x0bM\xe7\x01K\x0cM_\x04K\rM\x0f\nK\x0eM!\x17K\x0fM35K\x10K(K\x11K\\K\x12K\xd4K\x13M\xe7\x01K\x14M_\x04K\x15M\x0f\nK\x16M!\x17K\x17M35K\x18K(K\x19K\\K\x1aK\xd4K\x1bM\xe7\x01K\x1cM_\x04K\x1dM\x0f\nK\x1eM!\x17K\x1fM35K K(K!K\\K"K\xd4K#M\xe7\x01K$M_\x04K%M\x0f\nK&M!\x17K\'M35K(K(K)K\\K*K\xd4K+M\xe7\x01K,M_\x04K-M\x0f\nK.M!\x17K/M35K0K(K1K\\K2K\xd4K3M\xe7\x01K4M_\x04K5M\x0f\nK6M!\x17K7M35K8K(K9K\\K:K\xd4K;M\xe7\x01K<M_\x04K=M\x0f\nK>M!\x17K?M35K@K(KAK\\KBK\xd4KCM\xe7\x01KDM_\x04KEM\x0f\nKFM!\x17KGM35KHK(KIK\\KJK\xd4KKM\xe7\x01KLM_\x04KMM\x0f\nKNM!\x17KOM35KPK(KQK\\KRK\xd4KSM\xe7\x01KTM_\x04KUM\x0f\nKVM!\x17KWM35KXNKYNKZNK[NK\\NK]NK^NK_Nu\x8c\treplicate\x94}\x94(K\x00K\x01K\x01K\x01K\x02K\x01K\x03K\x01K\x04K\x01K\x05K\x01K\x06K\x01K\x07K\x01K\x08K\x01K\tK\x01K\nK\x01K\x0bK\x01K\x0cK\x01K\rK\x01K\x0eK\x01K\x0fK\x01K\x10K\x01K\x11K\x01K\x12K\x01K\x13K\x01K\x14K\x01K\x15K\x01K\x16K\x01K\x17K\x01K\x18K\x01K\x19K\x01K\x1aK\x01K\x1bK\x01K\x1cK\x01K\x1dK\x01K\x1eK\x01K\x1fK\x01K K\x01K!K\x01K"K\x01K#K\x01K$K\x01K%K\x01K&K\x01K\'K\x01K(K\x01K)K\x01K*K\x01K+K\x01K,K\x01K-K\x01K.K\x01K/K\x01K0K\x01K1K\x01K2K\x01K3K\x01K4K\x01K5K\x01K6K\x01K7K\x01K8K\x01K9K\x01K:K\x01K;K\x01K<K\x01K=K\x01K>K\x01K?K\x01K@K\x01KAK\x01KBK\x01KCK\x01KDK\x01KEK\x01KFK\x01KGK\x01KHK\x01KIK\x01KJK\x01KKK\x01KLK\x01KMK\x01KNK\x01KOK\x01KPK\x01KQK\x01KRK\x01KSK\x01KTK\x01KUK\x01KVK\x01KWK\x01KXK\x01KYK\x02KZK\x03K[K\x04K\\K\x05K]K\x06K^K\x07K_K\x08u\x8c\x05fastq\x94}\x94(K\x00\x8cs/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_1_S1_R1_001.fastq.gz\x94K\x01\x8cs/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_2_S2_R1_001.fastq.gz\x94K\x02\x8cs/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_3_S3_R1_001.fastq.gz\x94K\x03\x8cs/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_4_S4_R1_001.fastq.gz\x94K\x04\x8cs/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_5_S5_R1_001.fastq.gz\x94K\x05\x8cs/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_6_S6_R1_001.fastq.gz\x94K\x06\x8cs/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_7_S7_R1_001.fastq.gz\x94K\x07\x8cs/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_8_S8_R1_001.fastq.gz\x94K\x08\x8cs/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_9_S9_R1_001.fastq.gz\x94K\t\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_10_S10_R1_001.fastq.gz\x94K\n\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_11_S11_R1_001.fastq.gz\x94K\x0b\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_12_S12_R1_001.fastq.gz\x94K\x0c\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_13_S13_R1_001.fastq.gz\x94K\r\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_14_S14_R1_001.fastq.gz\x94K\x0e\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_15_S15_R1_001.fastq.gz\x94K\x0f\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_16_S16_R1_001.fastq.gz\x94K\x10\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_17_S17_R1_001.fastq.gz\x94K\x11\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_18_S18_R1_001.fastq.gz\x94K\x12\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_19_S19_R1_001.fastq.gz\x94K\x13\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_20_S20_R1_001.fastq.gz\x94K\x14\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_21_S21_R1_001.fastq.gz\x94K\x15\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_22_S22_R1_001.fastq.gz\x94K\x16\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_23_S23_R1_001.fastq.gz\x94K\x17\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_24_S24_R1_001.fastq.gz\x94K\x18\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_25_S25_R1_001.fastq.gz\x94K\x19\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_26_S26_R1_001.fastq.gz\x94K\x1a\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_27_S27_R1_001.fastq.gz\x94K\x1b\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_28_S28_R1_001.fastq.gz\x94K\x1c\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_29_S29_R1_001.fastq.gz\x94K\x1d\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_30_S30_R1_001.fastq.gz\x94K\x1e\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_31_S31_R1_001.fastq.gz\x94K\x1f\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_32_S32_R1_001.fastq.gz\x94K \x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_33_S33_R1_001.fastq.gz\x94K!\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_34_S34_R1_001.fastq.gz\x94K"\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_35_S35_R1_001.fastq.gz\x94K#\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_36_S36_R1_001.fastq.gz\x94K$\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_37_S37_R1_001.fastq.gz\x94K%\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_38_S38_R1_001.fastq.gz\x94K&\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_39_S39_R1_001.fastq.gz\x94K\'\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_40_S40_R1_001.fastq.gz\x94K(\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_41_S41_R1_001.fastq.gz\x94K)\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_42_S42_R1_001.fastq.gz\x94K*\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_43_S43_R1_001.fastq.gz\x94K+\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_44_S44_R1_001.fastq.gz\x94K,\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_45_S45_R1_001.fastq.gz\x94K-\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_46_S46_R1_001.fastq.gz\x94K.\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_47_S47_R1_001.fastq.gz\x94K/\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_48_S48_R1_001.fastq.gz\x94K0\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_49_S49_R1_001.fastq.gz\x94K1\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_50_S50_R1_001.fastq.gz\x94K2\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_51_S51_R1_001.fastq.gz\x94K3\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_52_S52_R1_001.fastq.gz\x94K4\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_53_S53_R1_001.fastq.gz\x94K5\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_54_S54_R1_001.fastq.gz\x94K6\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_55_S55_R1_001.fastq.gz\x94K7\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_56_S56_R1_001.fastq.gz\x94K8\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_57_S57_R1_001.fastq.gz\x94K9\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_58_S58_R1_001.fastq.gz\x94K:\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_59_S59_R1_001.fastq.gz\x94K;\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_60_S60_R1_001.fastq.gz\x94K<\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_61_S61_R1_001.fastq.gz\x94K=\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_62_S62_R1_001.fastq.gz\x94K>\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_63_S63_R1_001.fastq.gz\x94K?\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_64_S64_R1_001.fastq.gz\x94K@\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_65_S65_R1_001.fastq.gz\x94KA\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_66_S66_R1_001.fastq.gz\x94KB\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_67_S67_R1_001.fastq.gz\x94KC\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_68_S68_R1_001.fastq.gz\x94KD\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_69_S69_R1_001.fastq.gz\x94KE\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_70_S70_R1_001.fastq.gz\x94KF\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_71_S71_R1_001.fastq.gz\x94KG\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_72_S72_R1_001.fastq.gz\x94KH\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_73_S73_R1_001.fastq.gz\x94KI\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_74_S74_R1_001.fastq.gz\x94KJ\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_75_S75_R1_001.fastq.gz\x94KK\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_76_S76_R1_001.fastq.gz\x94KL\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_77_S77_R1_001.fastq.gz\x94KM\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_78_S78_R1_001.fastq.gz\x94KN\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_79_S79_R1_001.fastq.gz\x94KO\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_80_S80_R1_001.fastq.gz\x94KP\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_81_S81_R1_001.fastq.gz\x94KQ\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_82_S82_R1_001.fastq.gz\x94KR\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_83_S83_R1_001.fastq.gz\x94KS\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_84_S84_R1_001.fastq.gz\x94KT\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_85_S85_R1_001.fastq.gz\x94KU\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_86_S86_R1_001.fastq.gz\x94KV\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_87_S87_R1_001.fastq.gz\x94KW\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_88_S88_R1_001.fastq.gz\x94KX\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_89_S89_R1_001.fastq.gz\x94KY\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_90_S90_R1_001.fastq.gz\x94KZ\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_91_S91_R1_001.fastq.gz\x94K[\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_92_S92_R1_001.fastq.gz\x94K\\\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_93_S93_R1_001.fastq.gz\x94K]\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_94_S94_R1_001.fastq.gz\x94K^\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_95_S95_R1_001.fastq.gz\x94K_\x8cu/shared/ngs/illumina/bloom_lab/250826_VH00699_584_AACW2HHHV/Unaligned/Project_bloom_lab/PlateB_96_S96_R1_001.fastq.gz\x94u\x8c\x0fserum_replicate\x94}\x94(K\x00j\xcd\x03\x00\x00K\x01j\xcd\x03\x00\x00K\x02j\xcd\x03\x00\x00K\x03j\xcd\x03\x00\x00K\x04j\xcd\x03\x00\x00K\x05j\xcd\x03\x00\x00K\x06j\xcd\x03\x00\x00K\x07j\xcd\x03\x00\x00K\x08j\xce\x03\x00\x00K\tj\xce\x03\x00\x00K\nj\xce\x03\x00\x00K\x0bj\xce\x03\x00\x00K\x0cj\xce\x03\x00\x00K\rj\xce\x03\x00\x00K\x0ej\xce\x03\x00\x00K\x0fj\xce\x03\x00\x00K\x10j\xcf\x03\x00\x00K\x11j\xcf\x03\x00\x00K\x12j\xcf\x03\x00\x00K\x13j\xcf\x03\x00\x00K\x14j\xcf\x03\x00\x00K\x15j\xcf\x03\x00\x00K\x16j\xcf\x03\x00\x00K\x17j\xcf\x03\x00\x00K\x18j\xd0\x03\x00\x00K\x19j\xd0\x03\x00\x00K\x1aj\xd0\x03\x00\x00K\x1bj\xd0\x03\x00\x00K\x1cj\xd0\x03\x00\x00K\x1dj\xd0\x03\x00\x00K\x1ej\xd0\x03\x00\x00K\x1fj\xd0\x03\x00\x00K j\xd1\x03\x00\x00K!j\xd1\x03\x00\x00K"j\xd1\x03\x00\x00K#j\xd1\x03\x00\x00K$j\xd1\x03\x00\x00K%j\xd1\x03\x00\x00K&j\xd1\x03\x00\x00K\'j\xd1\x03\x00\x00K(j\xd2\x03\x00\x00K)j\xd2\x03\x00\x00K*j\xd2\x03\x00\x00K+j\xd2\x03\x00\x00K,j\xd2\x03\x00\x00K-j\xd2\x03\x00\x00K.j\xd2\x03\x00\x00K/j\xd2\x03\x00\x00K0j\xd3\x03\x00\x00K1j\xd3\x03\x00\x00K2j\xd3\x03\x00\x00K3j\xd3\x03\x00\x00K4j\xd3\x03\x00\x00K5j\xd3\x03\x00\x00K6j\xd3\x03\x00\x00K7j\xd3\x03\x00\x00K8j\xd4\x03\x00\x00K9j\xd4\x03\x00\x00K:j\xd4\x03\x00\x00K;j\xd4\x03\x00\x00K<j\xd4\x03\x00\x00K=j\xd4\x03\x00\x00K>j\xd4\x03\x00\x00K?j\xd4\x03\x00\x00K@j\xd5\x03\x00\x00KAj\xd5\x03\x00\x00KBj\xd5\x03\x00\x00KCj\xd5\x03\x00\x00KDj\xd5\x03\x00\x00KEj\xd5\x03\x00\x00KFj\xd5\x03\x00\x00KGj\xd5\x03\x00\x00KHj\xd6\x03\x00\x00KIj\xd6\x03\x00\x00KJj\xd6\x03\x00\x00KKj\xd6\x03\x00\x00KLj\xd6\x03\x00\x00KMj\xd6\x03\x00\x00KNj\xd6\x03\x00\x00KOj\xd6\x03\x00\x00KPj\xd7\x03\x00\x00KQj\xd7\x03\x00\x00KRj\xd7\x03\x00\x00KSj\xd7\x03\x00\x00KTj\xd7\x03\x00\x00KUj\xd7\x03\x00\x00KVj\xd7\x03\x00\x00KWj\xd7\x03\x00\x00KX\x8c\x06none-1\x94KY\x8c\x06none-2\x94KZ\x8c\x06none-3\x94K[\x8c\x06none-4\x94K\\\x8c\x06none-5\x94K]\x8c\x06none-6\x94K^\x8c\x06none-7\x94K_\x8c\x06none-8\x94u\x8c\x0esample_noplate\x94}\x94(K\x00\x8c\x0bEPIHK_21_40\x94K\x01\x8c\x0bEPIHK_21_92\x94K\x02\x8c\x0cEPIHK_21_212\x94K\x03\x8c\x0cEPIHK_21_487\x94K\x04\x8c\rEPIHK_21_1119\x94K\x05\x8c\rEPIHK_21_2575\x94K\x06\x8c\rEPIHK_21_5921\x94K\x07\x8c\x0eEPIHK_21_13619\x94K\x08\x8c\x0bEPIHK_22_40\x94K\t\x8c\x0bEPIHK_22_92\x94K\n\x8c\x0cEPIHK_22_212\x94K\x0b\x8c\x0cEPIHK_22_487\x94K\x0c\x8c\rEPIHK_22_1119\x94K\r\x8c\rEPIHK_22_2575\x94K\x0e\x8c\rEPIHK_22_5921\x94K\x0f\x8c\x0eEPIHK_22_13619\x94K\x10\x8c\x0bEPIHK_23_40\x94K\x11\x8c\x0bEPIHK_23_92\x94K\x12\x8c\x0cEPIHK_23_212\x94K\x13\x8c\x0cEPIHK_23_487\x94K\x14\x8c\rEPIHK_23_1119\x94K\x15\x8c\rEPIHK_23_2575\x94K\x16\x8c\rEPIHK_23_5921\x94K\x17\x8c\x0eEPIHK_23_13619\x94K\x18\x8c\x0bEPIHK_24_40\x94K\x19\x8c\x0bEPIHK_24_92\x94K\x1a\x8c\x0cEPIHK_24_212\x94K\x1b\x8c\x0cEPIHK_24_487\x94K\x1c\x8c\rEPIHK_24_1119\x94K\x1d\x8c\rEPIHK_24_2575\x94K\x1e\x8c\rEPIHK_24_5921\x94K\x1f\x8c\x0eEPIHK_24_13619\x94K \x8c\x0bEPIHK_25_40\x94K!\x8c\x0bEPIHK_25_92\x94K"\x8c\x0cEPIHK_25_212\x94K#\x8c\x0cEPIHK_25_487\x94K$\x8c\rEPIHK_25_1119\x94K%\x8c\rEPIHK_25_2575\x94K&\x8c\rEPIHK_25_5921\x94K\'\x8c\x0eEPIHK_25_13619\x94K(\x8c\x0bEPIHK_26_40\x94K)\x8c\x0bEPIHK_26_92\x94K*\x8c\x0cEPIHK_26_212\x94K+\x8c\x0cEPIHK_26_487\x94K,\x8c\rEPIHK_26_1119\x94K-\x8c\rEPIHK_26_2575\x94K.\x8c\rEPIHK_26_5921\x94K/\x8c\x0eEPIHK_26_13619\x94K0\x8c\x0bEPIHK_27_40\x94K1\x8c\x0bEPIHK_27_92\x94K2\x8c\x0cEPIHK_27_212\x94K3\x8c\x0cEPIHK_27_487\x94K4\x8c\rEPIHK_27_1119\x94K5\x8c\rEPIHK_27_2575\x94K6\x8c\rEPIHK_27_5921\x94K7\x8c\x0eEPIHK_27_13619\x94K8\x8c\x0bEPIHK_28_40\x94K9\x8c\x0bEPIHK_28_92\x94K:\x8c\x0cEPIHK_28_212\x94K;\x8c\x0cEPIHK_28_487\x94K<\x8c\rEPIHK_28_1119\x94K=\x8c\rEPIHK_28_2575\x94K>\x8c\rEPIHK_28_5921\x94K?\x8c\x0eEPIHK_28_13619\x94K@\x8c\x0bEPIHK_29_40\x94KA\x8c\x0bEPIHK_29_92\x94KB\x8c\x0cEPIHK_29_212\x94KC\x8c\x0cEPIHK_29_487\x94KD\x8c\rEPIHK_29_1119\x94KE\x8c\rEPIHK_29_2575\x94KF\x8c\rEPIHK_29_5921\x94KG\x8c\x0eEPIHK_29_13619\x94KH\x8c\x0bEPIHK_30_40\x94KI\x8c\x0bEPIHK_30_92\x94KJ\x8c\x0cEPIHK_30_212\x94KK\x8c\x0cEPIHK_30_487\x94KL\x8c\rEPIHK_30_1119\x94KM\x8c\rEPIHK_30_2575\x94KN\x8c\rEPIHK_30_5921\x94KO\x8c\x0eEPIHK_30_13619\x94KP\x8c\x0bEPIHK_31_40\x94KQ\x8c\x0bEPIHK_31_92\x94KR\x8c\x0cEPIHK_31_212\x94KS\x8c\x0cEPIHK_31_487\x94KT\x8c\rEPIHK_31_1119\x94KU\x8c\rEPIHK_31_2575\x94KV\x8c\rEPIHK_31_5921\x94KW\x8c\x0eEPIHK_31_13619\x94KXjA\x04\x00\x00KYjB\x04\x00\x00KZjC\x04\x00\x00K[jD\x04\x00\x00K\\jE\x04\x00\x00K]jF\x04\x00\x00K^jG\x04\x00\x00K_jH\x04\x00\x00u\x8c\x06sample\x94}\x94(K\x00j\xc8\x02\x00\x00K\x01j\xc9\x02\x00\x00K\x02j\xca\x02\x00\x00K\x03j\xcb\x02\x00\x00K\x04j\xcc\x02\x00\x00K\x05j\xcd\x02\x00\x00K\x06j\xce\x02\x00\x00K\x07j\xcf\x02\x00\x00K\x08j\xd0\x02\x00\x00K\tj\xd1\x02\x00\x00K\nj\xd2\x02\x00\x00K\x0bj\xd3\x02\x00\x00K\x0cj\xd4\x02\x00\x00K\rj\xd5\x02\x00\x00K\x0ej\xd6\x02\x00\x00K\x0fj\xd7\x02\x00\x00K\x10j\xd8\x02\x00\x00K\x11j\xd9\x02\x00\x00K\x12j\xda\x02\x00\x00K\x13j\xdb\x02\x00\x00K\x14j\xdc\x02\x00\x00K\x15j\xdd\x02\x00\x00K\x16j\xde\x02\x00\x00K\x17j\xdf\x02\x00\x00K\x18j\xe0\x02\x00\x00K\x19j\xe1\x02\x00\x00K\x1aj\xe2\x02\x00\x00K\x1bj\xe3\x02\x00\x00K\x1cj\xe4\x02\x00\x00K\x1dj\xe5\x02\x00\x00K\x1ej\xe6\x02\x00\x00K\x1fj\xe7\x02\x00\x00K j\xe8\x02\x00\x00K!j\xe9\x02\x00\x00K"j\xea\x02\x00\x00K#j\xeb\x02\x00\x00K$j\xec\x02\x00\x00K%j\xed\x02\x00\x00K&j\xee\x02\x00\x00K\'j\xef\x02\x00\x00K(j\xf0\x02\x00\x00K)j\xf1\x02\x00\x00K*j\xf2\x02\x00\x00K+j\xf3\x02\x00\x00K,j\xf4\x02\x00\x00K-j\xf5\x02\x00\x00K.j\xf6\x02\x00\x00K/j\xf7\x02\x00\x00K0j\xf8\x02\x00\x00K1j\xf9\x02\x00\x00K2j\xfa\x02\x00\x00K3j\xfb\x02\x00\x00K4j\xfc\x02\x00\x00K5j\xfd\x02\x00\x00K6j\xfe\x02\x00\x00K7j\xff\x02\x00\x00K8j\x00\x03\x00\x00K9j\x01\x03\x00\x00K:j\x02\x03\x00\x00K;j\x03\x03\x00\x00K<j\x04\x03\x00\x00K=j\x05\x03\x00\x00K>j\x06\x03\x00\x00K?j\x07\x03\x00\x00K@j\x08\x03\x00\x00KAj\t\x03\x00\x00KBj\n\x03\x00\x00KCj\x0b\x03\x00\x00KDj\x0c\x03\x00\x00KEj\r\x03\x00\x00KFj\x0e\x03\x00\x00KGj\x0f\x03\x00\x00KHj\x10\x03\x00\x00KIj\x11\x03\x00\x00KJj\x12\x03\x00\x00KKj\x13\x03\x00\x00KLj\x14\x03\x00\x00KMj\x15\x03\x00\x00KNj\x16\x03\x00\x00KOj\x17\x03\x00\x00KPj\x18\x03\x00\x00KQj\x19\x03\x00\x00KRj\x1a\x03\x00\x00KSj\x1b\x03\x00\x00KTj\x1c\x03\x00\x00KUj\x1d\x03\x00\x00KVj\x1e\x03\x00\x00KWj\x1f\x03\x00\x00KXj \x03\x00\x00KYj!\x03\x00\x00KZj"\x03\x00\x00K[j#\x03\x00\x00K\\j$\x03\x00\x00K]j%\x03\x00\x00K^j&\x03\x00\x00K_j\'\x03\x00\x00u\x8c\x05plate\x94}\x94(K\x00\x8c\x07plate14\x94K\x01j\xa7\x04\x00\x00K\x02j\xa7\x04\x00\x00K\x03j\xa7\x04\x00\x00K\x04j\xa7\x04\x00\x00K\x05j\xa7\x04\x00\x00K\x06j\xa7\x04\x00\x00K\x07j\xa7\x04\x00\x00K\x08j\xa7\x04\x00\x00K\tj\xa7\x04\x00\x00K\nj\xa7\x04\x00\x00K\x0bj\xa7\x04\x00\x00K\x0cj\xa7\x04\x00\x00K\rj\xa7\x04\x00\x00K\x0ej\xa7\x04\x00\x00K\x0fj\xa7\x04\x00\x00K\x10j\xa7\x04\x00\x00K\x11j\xa7\x04\x00\x00K\x12j\xa7\x04\x00\x00K\x13j\xa7\x04\x00\x00K\x14j\xa7\x04\x00\x00K\x15j\xa7\x04\x00\x00K\x16j\xa7\x04\x00\x00K\x17j\xa7\x04\x00\x00K\x18j\xa7\x04\x00\x00K\x19j\xa7\x04\x00\x00K\x1aj\xa7\x04\x00\x00K\x1bj\xa7\x04\x00\x00K\x1cj\xa7\x04\x00\x00K\x1dj\xa7\x04\x00\x00K\x1ej\xa7\x04\x00\x00K\x1fj\xa7\x04\x00\x00K j\xa7\x04\x00\x00K!j\xa7\x04\x00\x00K"j\xa7\x04\x00\x00K#j\xa7\x04\x00\x00K$j\xa7\x04\x00\x00K%j\xa7\x04\x00\x00K&j\xa7\x04\x00\x00K\'j\xa7\x04\x00\x00K(j\xa7\x04\x00\x00K)j\xa7\x04\x00\x00K*j\xa7\x04\x00\x00K+j\xa7\x04\x00\x00K,j\xa7\x04\x00\x00K-j\xa7\x04\x00\x00K.j\xa7\x04\x00\x00K/j\xa7\x04\x00\x00K0j\xa7\x04\x00\x00K1j\xa7\x04\x00\x00K2j\xa7\x04\x00\x00K3j\xa7\x04\x00\x00K4j\xa7\x04\x00\x00K5j\xa7\x04\x00\x00K6j\xa7\x04\x00\x00K7j\xa7\x04\x00\x00K8j\xa7\x04\x00\x00K9j\xa7\x04\x00\x00K:j\xa7\x04\x00\x00K;j\xa7\x04\x00\x00K<j\xa7\x04\x00\x00K=j\xa7\x04\x00\x00K>j\xa7\x04\x00\x00K?j\xa7\x04\x00\x00K@j\xa7\x04\x00\x00KAj\xa7\x04\x00\x00KBj\xa7\x04\x00\x00KCj\xa7\x04\x00\x00KDj\xa7\x04\x00\x00KEj\xa7\x04\x00\x00KFj\xa7\x04\x00\x00KGj\xa7\x04\x00\x00KHj\xa7\x04\x00\x00KIj\xa7\x04\x00\x00KJj\xa7\x04\x00\x00KKj\xa7\x04\x00\x00KLj\xa7\x04\x00\x00KMj\xa7\x04\x00\x00KNj\xa7\x04\x00\x00KOj\xa7\x04\x00\x00KPj\xa7\x04\x00\x00KQj\xa7\x04\x00\x00KRj\xa7\x04\x00\x00KSj\xa7\x04\x00\x00KTj\xa7\x04\x00\x00KUj\xa7\x04\x00\x00KVj\xa7\x04\x00\x00KWj\xa7\x04\x00\x00KXj\xa7\x04\x00\x00KYj\xa7\x04\x00\x00KZj\xa7\x04\x00\x00K[j\xa7\x04\x00\x00K\\j\xa7\x04\x00\x00K]j\xa7\x04\x00\x00K^j\xa7\x04\x00\x00K_j\xa7\x04\x00\x00u\x8c\x0fplate_replicate\x94}\x94(K\x00j\xa7\x04\x00\x00K\x01j\xa7\x04\x00\x00K\x02j\xa7\x04\x00\x00K\x03j\xa7\x04\x00\x00K\x04j\xa7\x04\x00\x00K\x05j\xa7\x04\x00\x00K\x06j\xa7\x04\x00\x00K\x07j\xa7\x04\x00\x00K\x08j\xa7\x04\x00\x00K\tj\xa7\x04\x00\x00K\nj\xa7\x04\x00\x00K\x0bj\xa7\x04\x00\x00K\x0cj\xa7\x04\x00\x00K\rj\xa7\x04\x00\x00K\x0ej\xa7\x04\x00\x00K\x0fj\xa7\x04\x00\x00K\x10j\xa7\x04\x00\x00K\x11j\xa7\x04\x00\x00K\x12j\xa7\x04\x00\x00K\x13j\xa7\x04\x00\x00K\x14j\xa7\x04\x00\x00K\x15j\xa7\x04\x00\x00K\x16j\xa7\x04\x00\x00K\x17j\xa7\x04\x00\x00K\x18j\xa7\x04\x00\x00K\x19j\xa7\x04\x00\x00K\x1aj\xa7\x04\x00\x00K\x1bj\xa7\x04\x00\x00K\x1cj\xa7\x04\x00\x00K\x1dj\xa7\x04\x00\x00K\x1ej\xa7\x04\x00\x00K\x1fj\xa7\x04\x00\x00K j\xa7\x04\x00\x00K!j\xa7\x04\x00\x00K"j\xa7\x04\x00\x00K#j\xa7\x04\x00\x00K$j\xa7\x04\x00\x00K%j\xa7\x04\x00\x00K&j\xa7\x04\x00\x00K\'j\xa7\x04\x00\x00K(j\xa7\x04\x00\x00K)j\xa7\x04\x00\x00K*j\xa7\x04\x00\x00K+j\xa7\x04\x00\x00K,j\xa7\x04\x00\x00K-j\xa7\x04\x00\x00K.j\xa7\x04\x00\x00K/j\xa7\x04\x00\x00K0j\xa7\x04\x00\x00K1j\xa7\x04\x00\x00K2j\xa7\x04\x00\x00K3j\xa7\x04\x00\x00K4j\xa7\x04\x00\x00K5j\xa7\x04\x00\x00K6j\xa7\x04\x00\x00K7j\xa7\x04\x00\x00K8j\xa7\x04\x00\x00K9j\xa7\x04\x00\x00K:j\xa7\x04\x00\x00K;j\xa7\x04\x00\x00K<j\xa7\x04\x00\x00K=j\xa7\x04\x00\x00K>j\xa7\x04\x00\x00K?j\xa7\x04\x00\x00K@j\xa7\x04\x00\x00KAj\xa7\x04\x00\x00KBj\xa7\x04\x00\x00KCj\xa7\x04\x00\x00KDj\xa7\x04\x00\x00KEj\xa7\x04\x00\x00KFj\xa7\x04\x00\x00KGj\xa7\x04\x00\x00KHj\xa7\x04\x00\x00KIj\xa7\x04\x00\x00KJj\xa7\x04\x00\x00KKj\xa7\x04\x00\x00KLj\xa7\x04\x00\x00KMj\xa7\x04\x00\x00KNj\xa7\x04\x00\x00KOj\xa7\x04\x00\x00KPj\xa7\x04\x00\x00KQj\xa7\x04\x00\x00KRj\xa7\x04\x00\x00KSj\xa7\x04\x00\x00KTj\xa7\x04\x00\x00KUj\xa7\x04\x00\x00KVj\xa7\x04\x00\x00KWj\xa7\x04\x00\x00KX\x8c\tplate14-1\x94KY\x8c\tplate14-2\x94KZ\x8c\tplate14-3\x94K[\x8c\tplate14-4\x94K\\\x8c\tplate14-5\x94K]\x8c\tplate14-6\x94K^\x8c\tplate14-7\x94K_\x8c\tplate14-8\x94uuu\x8c\x04png8\x94e}\x94(h\xcc}\x94(\x8c\x0eviral_barcodes\x94K\x00N\x86\x94\x8c\x16neut_standard_barcodes\x94K\x01N\x86\x94jg\x03\x00\x00K\x02N\x86\x94\x8c\x0cplate_params\x94K\x03N\x86\x94\x8c\x14curve_display_method\x94K\x04N\x86\x94uh\xd4]\x94(h\xd6h\xd7eh\xd6h\xd9)\x81\x94}\x94h\xdch\xd6sbh\xd7h\xd9)\x81\x94}\x94h\xdch\xd7sbj\xb5\x04\x00\x00j\x0c\x01\x00\x00j\xb7\x04\x00\x00j\xbb\x02\x00\x00jg\x03\x00\x00j\xc7\x02\x00\x00j\xba\x04\x00\x00j(\x03\x00\x00j\xbc\x04\x00\x00j\xb2\x04\x00\x00ub\x8c\r_params_types\x94}\x94\x8c\twildcards\x94h\x06\x8c\tWildcards\x94\x93\x94)\x81\x94\x8c\x07plate14\x94a}\x94(h\xcc}\x94\x8c\x05plate\x94K\x00N\x86\x94sh\xd4]\x94(h\xd6h\xd7eh\xd6h\xd9)\x81\x94}\x94h\xdch\xd6sbh\xd7h\xd9)\x81\x94}\x94h\xdch\xd7sbj\xa5\x04\x00\x00j\xc9\x04\x00\x00ub\x8c\x07threads\x94K\x01\x8c\tresources\x94h\x06\x8c\tResources\x94\x93\x94)\x81\x94(K\x01K\x01\x8c\x15/loc/scratch/30805658\x94e}\x94(h\xcc}\x94(\x8c\x06_cores\x94K\x00N\x86\x94\x8c\x06_nodes\x94K\x01N\x86\x94\x8c\x06tmpdir\x94K\x02N\x86\x94uh\xd4]\x94(h\xd6h\xd7eh\xd6h\xd9)\x81\x94}\x94h\xdch\xd6sbh\xd7h\xd9)\x81\x94}\x94h\xdch\xd7sbj\xdb\x04\x00\x00K\x01j\xdd\x04\x00\x00K\x01j\xdf\x04\x00\x00j\xd8\x04\x00\x00ub\x8c\x03log\x94h\x06\x8c\x03Log\x94\x93\x94)\x81\x94\x8c,results/plates/plate14/process_plate14.ipynb\x94a}\x94(h\xcc}\x94\x8c\x08notebook\x94K\x00N\x86\x94sh\xd4]\x94(h\xd6h\xd7eh\xd6h\xd9)\x81\x94}\x94h\xdch\xd6sbh\xd7h\xd9)\x81\x94}\x94h\xdch\xd7sbj\xed\x04\x00\x00j\xea\x04\x00\x00ub\x8c\x06config\x94}\x94(\x8c\x16recent_vaccine_strains\x94}\x94(\x8c\x1fA/Croatia/10136RV/2023-egg_H3N2\x94\x8c\x1b2025-2026 egg-based vaccine\x94\x8c!A/DistrictOfColumbia/27/2023_H3N2\x94\x8c\x1c2025-2026 cell-based vaccine\x94\x8c!A/Victoria/4897/2022_IVR-238_H1N1\x94\x8c\x1b2025-2026 egg-based vaccine\x94\x8c\x18A/Wisconsin/67/2022_H1N1\x94\x8c\x1c2025-2026 cell-based vaccine\x94\x8c\x16A/Thailand/8/2022_H3N2\x94\x8c\x1b2024-2025 egg-based vaccine\x94\x8c\x1cA/Massachusetts/18/2022_H3N2\x94\x8c\x1c2024-2025 cell-based vaccine\x94u\x8c\x1chuman_sera_groups_to_exclude\x94]\x94\x8c\x03FCI\x94a\x8c\x15human_sera_to_exclude\x94]\x94(\x8c\x06SCH_19\x94\x8c\x06SCH_22\x94\x8c\x06SCH_26\x94e\x8c\x17human_sera_plots_params\x94}\x94(\x8c\x0ctiter_cutoff\x94K\x8c\x8c\x11titer_lower_limit\x94K(\x8c\x10min_frac_strains\x94G?\xec\xcc\xcc\xcc\xcc\xcc\xcd\x8c\rmin_frac_sera\x94G?\xe8\x00\x00\x00\x00\x00\x00\x8c\x0fmin_frac_action\x94\x8c\x05raise\x94u\x8c\x10seqneut-pipeline\x94\x8c\x10seqneut-pipeline\x94\x8c\x04docs\x94\x8c\x04docs\x94\x8c\x0bdescription\x94X\x1b\x01\x00\x00# Sequencing-based neutralization assays using human serum samples collected in late 2024-2025 and combined pdmH1N1 and H3N2 influenza library\n\nThe numerical data and computer code are at [https://github.com/jbloomlab/flu-seqneut-2025](https://github.com/jbloomlab/flu-seqneut-2025)\n\x94\x8c\x0fviral_libraries\x94}\x94(\x8c!flu-seqneut-2025_library_designed\x94\x8cDdata/viral_libraries/flu-seqneut-2025-barcode-to-strain_designed.csv\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8cBdata/viral_libraries/flu-seqneut-2025-barcode-to-strain_actual.csv\x94u\x8c\x17viral_strain_plot_order\x94\x8c4data/viral_libraries/flu-seqneut-2025_plot_order.csv\x94\x8c\x12neut_standard_sets\x94}\x94\x8c\x08loes2023\x94\x8c3data/neut_standard_sets/loes2023_neut_standards.csv\x94s\x8c\x1eillumina_barcode_parser_params\x94}\x94(j\\\x03\x00\x00j]\x03\x00\x00j^\x03\x00\x00j_\x03\x00\x00j`\x03\x00\x00K\x14ja\x03\x00\x00K\x04jb\x03\x00\x00jc\x03\x00\x00u\x8c#default_process_plate_qc_thresholds\x94}\x94(j7\x03\x00\x00M\xf4\x01j8\x03\x00\x00G?tz\xe1G\xae\x14{j9\x03\x00\x00}\x94(j;\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j<\x03\x00\x00K\x04j=\x03\x00\x00K\x02uj>\x03\x00\x00}\x94(j@\x03\x00\x00G?tz\xe1G\xae\x14{jA\x03\x00\x00K\x04jB\x03\x00\x00K\x02ujC\x03\x00\x00M\xe8\x03jD\x03\x00\x00KdjE\x03\x00\x00K\x03jF\x03\x00\x00K\x06u\x8c%default_process_plate_curvefit_params\x94}\x94(jI\x03\x00\x00K\x01jJ\x03\x00\x00]\x94(G?\xe3333333K\x01ejL\x03\x00\x00K\x00jM\x03\x00\x00]\x94(G?\xe9\x99\x99\x99\x99\x99\x9aK\neu\x8c!default_process_plate_curvefit_qc\x94}\x94(jQ\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00jR\x03\x00\x00}\x94(jT\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00jU\x03\x00\x00G?\xc3333333ujV\x03\x00\x00]\x94jX\x03\x00\x00]\x94u\x8c\x16default_serum_titer_as\x94\x8c\x08midpoint\x94\x8c\x1bdefault_serum_qc_thresholds\x94}\x94(\x8c\x0emin_replicates\x94K\x01\x8c\x1bmax_fold_change_from_median\x94K\x06\x8c\x11viruses_ignore_qc\x94]\x94u\x8c\x16sera_override_defaults\x94}\x94\x8c\x06plates\x94}\x94(\x8c\x08plate1-2\x94}\x94(\x8c\x05group\x94\x8c\x04UWMC\x94\x8c\x04date\x94\x8c\x08datetime\x94\x8c\x04date\x94\x93\x94C\x04\x07\xe9\x08\x07\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c#data/plates/2025-08-11_plate1-2.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\x05wells\x94]\x94(\x8c\x02H1\x94\x8c\x02H2\x94\x8c\x02H3\x94\x8c\x02H4\x94\x8c\x02H5\x94\x8c\x02H6\x94\x8c\x02H7\x94\x8c\x02H8\x94\x8c\x02H9\x94\x8c\x03H10\x94\x8c\x03H11\x94\x8c\x03H12\x94es\x8c\rqc_thresholds\x94}\x94(j7\x03\x00\x00M\xf4\x01j8\x03\x00\x00G?tz\xe1G\xae\x14{j9\x03\x00\x00}\x94(j;\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j<\x03\x00\x00K\x04j=\x03\x00\x00K\x02uj>\x03\x00\x00}\x94(j@\x03\x00\x00G?tz\xe1G\xae\x14{jA\x03\x00\x00K\x04jB\x03\x00\x00K\x02ujC\x03\x00\x00M\xe8\x03jD\x03\x00\x00KdjE\x03\x00\x00K\x03jF\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(jI\x03\x00\x00K\x01jJ\x03\x00\x00j.\x05\x00\x00jL\x03\x00\x00K\x00jM\x03\x00\x00j/\x05\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(jQ\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00jR\x03\x00\x00}\x94(jT\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00jU\x03\x00\x00G?\xc3333333ujV\x03\x00\x00j3\x05\x00\x00jX\x03\x00\x00j4\x05\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06ATCGAT\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x08plate2-2\x94}\x94(\x8c\x05group\x94\x8c\x04UWMC\x94\x8c\x04date\x94jH\x05\x00\x00C\x04\x07\xe9\x08\x07\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c#data/plates/2025-08-11_plate2-2.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j7\x03\x00\x00M\xf4\x01j8\x03\x00\x00G?tz\xe1G\xae\x14{j9\x03\x00\x00}\x94(j;\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j<\x03\x00\x00K\x04j=\x03\x00\x00K\x02uj>\x03\x00\x00}\x94(j@\x03\x00\x00G?tz\xe1G\xae\x14{jA\x03\x00\x00K\x04jB\x03\x00\x00K\x02ujC\x03\x00\x00M\xe8\x03jD\x03\x00\x00KdjE\x03\x00\x00K\x03jF\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(jI\x03\x00\x00K\x01jJ\x03\x00\x00j.\x05\x00\x00jL\x03\x00\x00K\x00jM\x03\x00\x00j/\x05\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(jQ\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00jR\x03\x00\x00}\x94(jT\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00jU\x03\x00\x00G?\xc3333333ujV\x03\x00\x00j3\x05\x00\x00jX\x03\x00\x00j4\x05\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06TGACGC\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x06plate3\x94}\x94(\x8c\x05group\x94\x8c\x04UWMC\x94\x8c\x04date\x94jH\x05\x00\x00C\x04\x07\xe9\x08\x07\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c!data/plates/2025-08-11_plate3.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j7\x03\x00\x00M\xf4\x01j8\x03\x00\x00G?tz\xe1G\xae\x14{j9\x03\x00\x00}\x94(j;\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j<\x03\x00\x00K\x04j=\x03\x00\x00K\x02uj>\x03\x00\x00}\x94(j@\x03\x00\x00G?tz\xe1G\xae\x14{jA\x03\x00\x00K\x04jB\x03\x00\x00K\x02ujC\x03\x00\x00M\xe8\x03jD\x03\x00\x00KdjE\x03\x00\x00K\x03jF\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(jI\x03\x00\x00K\x01jJ\x03\x00\x00j.\x05\x00\x00jL\x03\x00\x00K\x00jM\x03\x00\x00j/\x05\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(jQ\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00jR\x03\x00\x00}\x94(jT\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00jU\x03\x00\x00G?\xc3333333ujV\x03\x00\x00j3\x05\x00\x00jX\x03\x00\x00j4\x05\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06CAGTTG\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x06plate4\x94}\x94(\x8c\x05group\x94\x8c\x04UWMC\x94\x8c\x04date\x94jH\x05\x00\x00C\x04\x07\xe9\x08\x07\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c!data/plates/2025-08-11_plate4.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j7\x03\x00\x00M\xf4\x01j8\x03\x00\x00G?tz\xe1G\xae\x14{j9\x03\x00\x00}\x94(j;\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j<\x03\x00\x00K\x04j=\x03\x00\x00K\x02uj>\x03\x00\x00}\x94(j@\x03\x00\x00G?tz\xe1G\xae\x14{jA\x03\x00\x00K\x04jB\x03\x00\x00K\x02ujC\x03\x00\x00M\xe8\x03jD\x03\x00\x00KdjE\x03\x00\x00K\x03jF\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(jI\x03\x00\x00K\x01jJ\x03\x00\x00j.\x05\x00\x00jL\x03\x00\x00K\x00jM\x03\x00\x00j/\x05\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(jQ\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00jR\x03\x00\x00}\x94(jT\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00jU\x03\x00\x00G?\xc3333333ujV\x03\x00\x00j3\x05\x00\x00jX\x03\x00\x00j4\x05\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06GTCTAA\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x06plate6\x94}\x94(\x8c\x05group\x94\x8c\x03FCI\x94\x8c\x04date\x94jH\x05\x00\x00C\x04\x07\xe9\x08\x0c\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c!data/plates/2025-08-12_plate6.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j7\x03\x00\x00M\xf4\x01j8\x03\x00\x00G?tz\xe1G\xae\x14{j9\x03\x00\x00}\x94(j;\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j<\x03\x00\x00K\x04j=\x03\x00\x00K\x02uj>\x03\x00\x00}\x94(j@\x03\x00\x00G?tz\xe1G\xae\x14{jA\x03\x00\x00K\x04jB\x03\x00\x00K\x02ujC\x03\x00\x00M\xe8\x03jD\x03\x00\x00KdjE\x03\x00\x00K\x03jF\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(jI\x03\x00\x00K\x01jJ\x03\x00\x00j.\x05\x00\x00jL\x03\x00\x00K\x00jM\x03\x00\x00j/\x05\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(jQ\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00jR\x03\x00\x00}\x94(jT\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00jU\x03\x00\x00G?\xc3333333ujV\x03\x00\x00j3\x05\x00\x00jX\x03\x00\x00j4\x05\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06ATCGAT\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\nplate7_FCI\x94}\x94(\x8c\x05group\x94\x8c\x03FCI\x94\x8c\x04date\x94jH\x05\x00\x00C\x04\x07\xe9\x08\x0c\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c%data/plates/2025-08-12_plate7_FCI.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j7\x03\x00\x00M\xf4\x01j8\x03\x00\x00G?tz\xe1G\xae\x14{j9\x03\x00\x00}\x94(j;\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j<\x03\x00\x00K\x04j=\x03\x00\x00K\x02uj>\x03\x00\x00}\x94(j@\x03\x00\x00G?tz\xe1G\xae\x14{jA\x03\x00\x00K\x04jB\x03\x00\x00K\x02ujC\x03\x00\x00M\xe8\x03jD\x03\x00\x00KdjE\x03\x00\x00K\x03jF\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(jI\x03\x00\x00K\x01jJ\x03\x00\x00j.\x05\x00\x00jL\x03\x00\x00K\x00jM\x03\x00\x00j/\x05\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(jQ\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00jR\x03\x00\x00}\x94(jT\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00jU\x03\x00\x00G?\xc3333333ujV\x03\x00\x00j3\x05\x00\x00jX\x03\x00\x00j4\x05\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06TGACGC\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\nplate7_SCH\x94}\x94(\x8c\x05group\x94\x8c\x03SCH\x94\x8c\x04date\x94jH\x05\x00\x00C\x04\x07\xe9\x08\x0c\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c%data/plates/2025-08-12_plate7_SCH.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j7\x03\x00\x00M\xf4\x01j8\x03\x00\x00G?tz\xe1G\xae\x14{j9\x03\x00\x00}\x94(j;\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j<\x03\x00\x00K\x04j=\x03\x00\x00K\x02uj>\x03\x00\x00}\x94(j@\x03\x00\x00G?tz\xe1G\xae\x14{jA\x03\x00\x00K\x04jB\x03\x00\x00K\x02ujC\x03\x00\x00M\xe8\x03jD\x03\x00\x00KdjE\x03\x00\x00K\x03jF\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(jI\x03\x00\x00K\x01jJ\x03\x00\x00j.\x05\x00\x00jL\x03\x00\x00K\x00jM\x03\x00\x00j/\x05\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(jQ\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00jR\x03\x00\x00}\x94(jT\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00jU\x03\x00\x00G?\xc3333333ujV\x03\x00\x00j3\x05\x00\x00jX\x03\x00\x00j4\x05\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06TGACGC\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x06plate8\x94}\x94(\x8c\x05group\x94\x8c\x03SCH\x94\x8c\x04date\x94jH\x05\x00\x00C\x04\x07\xe9\x08\x0c\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c!data/plates/2025-08-12_plate8.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j7\x03\x00\x00M\xf4\x01j8\x03\x00\x00G?tz\xe1G\xae\x14{j9\x03\x00\x00}\x94(j;\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j<\x03\x00\x00K\x04j=\x03\x00\x00K\x02uj>\x03\x00\x00}\x94(j@\x03\x00\x00G?tz\xe1G\xae\x14{jA\x03\x00\x00K\x04jB\x03\x00\x00K\x02ujC\x03\x00\x00M\xe8\x03jD\x03\x00\x00KdjE\x03\x00\x00K\x03jF\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(jI\x03\x00\x00K\x01jJ\x03\x00\x00j.\x05\x00\x00jL\x03\x00\x00K\x00jM\x03\x00\x00j/\x05\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(jQ\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00jR\x03\x00\x00}\x94(jT\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00jU\x03\x00\x00G?\xc3333333ujV\x03\x00\x00j3\x05\x00\x00jX\x03\x00\x00j4\x05\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06CAGTTG\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x06plate9\x94}\x94(\x8c\x05group\x94\x8c\x03SCH\x94\x8c\x04date\x94jH\x05\x00\x00C\x04\x07\xe9\x08\r\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c!data/plates/2025-08-13_plate9.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j7\x03\x00\x00M\xf4\x01j8\x03\x00\x00G?tz\xe1G\xae\x14{j9\x03\x00\x00}\x94(j;\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j<\x03\x00\x00K\x04j=\x03\x00\x00K\x02uj>\x03\x00\x00}\x94(j@\x03\x00\x00G?tz\xe1G\xae\x14{jA\x03\x00\x00K\x04jB\x03\x00\x00K\x02ujC\x03\x00\x00M\xe8\x03jD\x03\x00\x00KdjE\x03\x00\x00K\x03jF\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(jI\x03\x00\x00K\x01jJ\x03\x00\x00j.\x05\x00\x00jL\x03\x00\x00K\x00jM\x03\x00\x00j/\x05\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(jQ\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00jR\x03\x00\x00}\x94(jT\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00jU\x03\x00\x00G?\xc3333333ujV\x03\x00\x00j3\x05\x00\x00jX\x03\x00\x00j4\x05\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06GTCTAA\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate10\x94}\x94(\x8c\x05group\x94\x8c\x03SCH\x94\x8c\x04date\x94jH\x05\x00\x00C\x04\x07\xe9\x08\r\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c"data/plates/2025-08-13_plate10.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j7\x03\x00\x00M\xf4\x01j8\x03\x00\x00G?tz\xe1G\xae\x14{j9\x03\x00\x00}\x94(j;\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j<\x03\x00\x00K\x04j=\x03\x00\x00K\x02uj>\x03\x00\x00}\x94(j@\x03\x00\x00G?tz\xe1G\xae\x14{jA\x03\x00\x00K\x04jB\x03\x00\x00K\x02ujC\x03\x00\x00M\xe8\x03jD\x03\x00\x00KdjE\x03\x00\x00K\x03jF\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(jI\x03\x00\x00K\x01jJ\x03\x00\x00j.\x05\x00\x00jL\x03\x00\x00K\x00jM\x03\x00\x00j/\x05\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(jQ\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00jR\x03\x00\x00}\x94(jT\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00jU\x03\x00\x00G?\xc3333333ujV\x03\x00\x00j3\x05\x00\x00jX\x03\x00\x00j4\x05\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06ACGCTG\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate11\x94}\x94(\x8c\x05group\x94\x8c\x03SCH\x94\x8c\x04date\x94jH\x05\x00\x00C\x04\x07\xe9\x08\r\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c"data/plates/2025-08-13_plate11.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j7\x03\x00\x00M\xf4\x01j8\x03\x00\x00G?tz\xe1G\xae\x14{j9\x03\x00\x00}\x94(j;\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j<\x03\x00\x00K\x04j=\x03\x00\x00K\x02uj>\x03\x00\x00}\x94(j@\x03\x00\x00G?tz\xe1G\xae\x14{jA\x03\x00\x00K\x04jB\x03\x00\x00K\x02ujC\x03\x00\x00M\xe8\x03jD\x03\x00\x00KdjE\x03\x00\x00K\x03jF\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(jI\x03\x00\x00K\x01jJ\x03\x00\x00j.\x05\x00\x00jL\x03\x00\x00K\x00jM\x03\x00\x00j/\x05\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(jQ\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00jR\x03\x00\x00}\x94(jT\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00jU\x03\x00\x00G?\xc3333333ujV\x03\x00\x00j3\x05\x00\x00jX\x03\x00\x00j4\x05\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06TATAGC\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x0bplate12_SCH\x94}\x94(\x8c\x05group\x94\x8c\x03SCH\x94\x8c\x04date\x94jH\x05\x00\x00C\x04\x07\xe9\x08\r\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c&data/plates/2025-08-13_plate12_SCH.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j7\x03\x00\x00M\xf4\x01j8\x03\x00\x00G?tz\xe1G\xae\x14{j9\x03\x00\x00}\x94(j;\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j<\x03\x00\x00K\x04j=\x03\x00\x00K\x02uj>\x03\x00\x00}\x94(j@\x03\x00\x00G?tz\xe1G\xae\x14{jA\x03\x00\x00K\x04jB\x03\x00\x00K\x02ujC\x03\x00\x00M\xe8\x03jD\x03\x00\x00KdjE\x03\x00\x00K\x03jF\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(jI\x03\x00\x00K\x01jJ\x03\x00\x00j.\x05\x00\x00jL\x03\x00\x00K\x00jM\x03\x00\x00j/\x05\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(jQ\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00jR\x03\x00\x00}\x94(jT\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00jU\x03\x00\x00G?\xc3333333ujV\x03\x00\x00j3\x05\x00\x00jX\x03\x00\x00j4\x05\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06CGAGCT\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\rplate12_EPIHK\x94}\x94(\x8c\x05group\x94\x8c\x05EPIHK\x94\x8c\x04date\x94jH\x05\x00\x00C\x04\x07\xe9\x08\r\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c(data/plates/2025-08-13_plate12_EPIHK.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j7\x03\x00\x00M\xf4\x01j8\x03\x00\x00G?tz\xe1G\xae\x14{j9\x03\x00\x00}\x94(j;\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j<\x03\x00\x00K\x04j=\x03\x00\x00K\x02uj>\x03\x00\x00}\x94(j@\x03\x00\x00G?tz\xe1G\xae\x14{jA\x03\x00\x00K\x04jB\x03\x00\x00K\x02ujC\x03\x00\x00M\xe8\x03jD\x03\x00\x00KdjE\x03\x00\x00K\x03jF\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(jI\x03\x00\x00K\x01jJ\x03\x00\x00j.\x05\x00\x00jL\x03\x00\x00K\x00jM\x03\x00\x00j/\x05\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(jQ\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00jR\x03\x00\x00}\x94(jT\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00jU\x03\x00\x00G?\xc3333333ujV\x03\x00\x00j3\x05\x00\x00jX\x03\x00\x00j4\x05\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06CGAGCT\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate13\x94}\x94(\x8c\x05group\x94\x8c\x05EPIHK\x94\x8c\x04date\x94jH\x05\x00\x00C\x04\x07\xe9\x08\x12\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c"data/plates/2025-08-18_plate13.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j7\x03\x00\x00M\xf4\x01j8\x03\x00\x00G?tz\xe1G\xae\x14{j9\x03\x00\x00}\x94(j;\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j<\x03\x00\x00K\x04j=\x03\x00\x00K\x02uj>\x03\x00\x00}\x94(j@\x03\x00\x00G?tz\xe1G\xae\x14{jA\x03\x00\x00K\x04jB\x03\x00\x00K\x02ujC\x03\x00\x00M\xe8\x03jD\x03\x00\x00KdjE\x03\x00\x00K\x03jF\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(jI\x03\x00\x00K\x01jJ\x03\x00\x00j.\x05\x00\x00jL\x03\x00\x00K\x00jM\x03\x00\x00j/\x05\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(jQ\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00jR\x03\x00\x00}\x94(jT\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00jU\x03\x00\x00G?\xc3333333ujV\x03\x00\x00j3\x05\x00\x00jX\x03\x00\x00j4\x05\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06GCTACA\x94\x8c\x12upstream2_mismatch\x94K\x01uuj\xa7\x04\x00\x00}\x94(j)\x03\x00\x00j*\x03\x00\x00j+\x03\x00\x00jH\x05\x00\x00C\x04\x07\xe9\x08\x12\x94\x85\x94R\x94j-\x03\x00\x00j.\x03\x00\x00j/\x03\x00\x00j0\x03\x00\x00j1\x03\x00\x00j2\x03\x00\x00j3\x03\x00\x00}\x94j5\x03\x00\x00}\x94(j7\x03\x00\x00M\xf4\x01j8\x03\x00\x00G?tz\xe1G\xae\x14{j9\x03\x00\x00}\x94(j;\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j<\x03\x00\x00K\x04j=\x03\x00\x00K\x02uj>\x03\x00\x00}\x94(j@\x03\x00\x00G?tz\xe1G\xae\x14{jA\x03\x00\x00K\x04jB\x03\x00\x00K\x02ujC\x03\x00\x00M\xe8\x03jD\x03\x00\x00KdjE\x03\x00\x00K\x03jF\x03\x00\x00K\x06ujG\x03\x00\x00}\x94(jI\x03\x00\x00K\x01jJ\x03\x00\x00j.\x05\x00\x00jL\x03\x00\x00K\x00jM\x03\x00\x00j/\x05\x00\x00ujO\x03\x00\x00}\x94(jQ\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00jR\x03\x00\x00}\x94(jT\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00jU\x03\x00\x00G?\xc3333333ujV\x03\x00\x00j3\x05\x00\x00jX\x03\x00\x00j4\x05\x00\x00ujZ\x03\x00\x00}\x94(jd\x03\x00\x00je\x03\x00\x00jf\x03\x00\x00K\x01uu\x8c\x07plate15\x94}\x94(\x8c\x05group\x94\x8c\x05EPIHK\x94\x8c\x04date\x94jH\x05\x00\x00C\x04\x07\xe9\x08\x12\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c"data/plates/2025-08-18_plate15.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j7\x03\x00\x00M\xf4\x01j8\x03\x00\x00G?tz\xe1G\xae\x14{j9\x03\x00\x00}\x94(j;\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j<\x03\x00\x00K\x04j=\x03\x00\x00K\x02uj>\x03\x00\x00}\x94(j@\x03\x00\x00G?tz\xe1G\xae\x14{jA\x03\x00\x00K\x04jB\x03\x00\x00K\x02ujC\x03\x00\x00M\xe8\x03jD\x03\x00\x00KdjE\x03\x00\x00K\x03jF\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(jI\x03\x00\x00K\x01jJ\x03\x00\x00j.\x05\x00\x00jL\x03\x00\x00K\x00jM\x03\x00\x00j/\x05\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(jQ\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00jR\x03\x00\x00}\x94(jT\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00jU\x03\x00\x00G?\xc3333333ujV\x03\x00\x00j3\x05\x00\x00jX\x03\x00\x00j4\x05\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06TGACGC\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate16\x94}\x94(\x8c\x05group\x94\x8c\x04NIID\x94\x8c\x04date\x94jH\x05\x00\x00C\x04\x07\xe9\x08\x12\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c"data/plates/2025-08-18_plate16.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j7\x03\x00\x00M\xf4\x01j8\x03\x00\x00G?tz\xe1G\xae\x14{j9\x03\x00\x00}\x94(j;\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j<\x03\x00\x00K\x04j=\x03\x00\x00K\x02uj>\x03\x00\x00}\x94(j@\x03\x00\x00G?tz\xe1G\xae\x14{jA\x03\x00\x00K\x04jB\x03\x00\x00K\x02ujC\x03\x00\x00M\xe8\x03jD\x03\x00\x00KdjE\x03\x00\x00K\x03jF\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(jI\x03\x00\x00K\x01jJ\x03\x00\x00j.\x05\x00\x00jL\x03\x00\x00K\x00jM\x03\x00\x00j/\x05\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(jQ\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00jR\x03\x00\x00}\x94(jT\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00jU\x03\x00\x00G?\xc3333333ujV\x03\x00\x00j3\x05\x00\x00jX\x03\x00\x00j4\x05\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06CAGTTG\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate17\x94}\x94(\x8c\x05group\x94\x8c\x04NIID\x94\x8c\x04date\x94jH\x05\x00\x00C\x04\x07\xe9\x08\x14\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c"data/plates/2025-08-20_plate17.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j7\x03\x00\x00M\xf4\x01j8\x03\x00\x00G?tz\xe1G\xae\x14{j9\x03\x00\x00}\x94(j;\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j<\x03\x00\x00K\x04j=\x03\x00\x00K\x02uj>\x03\x00\x00}\x94(j@\x03\x00\x00G?tz\xe1G\xae\x14{jA\x03\x00\x00K\x04jB\x03\x00\x00K\x02ujC\x03\x00\x00M\xe8\x03jD\x03\x00\x00KdjE\x03\x00\x00K\x03jF\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(jI\x03\x00\x00K\x01jJ\x03\x00\x00j.\x05\x00\x00jL\x03\x00\x00K\x00jM\x03\x00\x00j/\x05\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(jQ\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00jR\x03\x00\x00}\x94(jT\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00jU\x03\x00\x00G?\xc3333333ujV\x03\x00\x00j3\x05\x00\x00jX\x03\x00\x00j4\x05\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06GTCTAA\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate18\x94}\x94(\x8c\x05group\x94\x8c\x04NIID\x94\x8c\x04date\x94jH\x05\x00\x00C\x04\x07\xe9\x08\x14\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c"data/plates/2025-08-20_plate18.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j7\x03\x00\x00M\xf4\x01j8\x03\x00\x00G?tz\xe1G\xae\x14{j9\x03\x00\x00}\x94(j;\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j<\x03\x00\x00K\x04j=\x03\x00\x00K\x02uj>\x03\x00\x00}\x94(j@\x03\x00\x00G?tz\xe1G\xae\x14{jA\x03\x00\x00K\x04jB\x03\x00\x00K\x02ujC\x03\x00\x00M\xe8\x03jD\x03\x00\x00KdjE\x03\x00\x00K\x03jF\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(jI\x03\x00\x00K\x01jJ\x03\x00\x00j.\x05\x00\x00jL\x03\x00\x00K\x00jM\x03\x00\x00j/\x05\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(jQ\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00jR\x03\x00\x00}\x94(jT\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00jU\x03\x00\x00G?\xc3333333ujV\x03\x00\x00j3\x05\x00\x00jX\x03\x00\x00j4\x05\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06ACGCTG\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate19\x94}\x94(\x8c\x05group\x94\x8c\x04NIID\x94\x8c\x04date\x94jH\x05\x00\x00C\x04\x07\xe9\x08\x14\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c"data/plates/2025-08-20_plate19.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j7\x03\x00\x00M\xf4\x01j8\x03\x00\x00G?tz\xe1G\xae\x14{j9\x03\x00\x00}\x94(j;\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j<\x03\x00\x00K\x04j=\x03\x00\x00K\x02uj>\x03\x00\x00}\x94(j@\x03\x00\x00G?tz\xe1G\xae\x14{jA\x03\x00\x00K\x04jB\x03\x00\x00K\x02ujC\x03\x00\x00M\xe8\x03jD\x03\x00\x00KdjE\x03\x00\x00K\x03jF\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(jI\x03\x00\x00K\x01jJ\x03\x00\x00j.\x05\x00\x00jL\x03\x00\x00K\x00jM\x03\x00\x00j/\x05\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(jQ\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00jR\x03\x00\x00}\x94(jT\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00jU\x03\x00\x00G?\xc3333333ujV\x03\x00\x00j3\x05\x00\x00jX\x03\x00\x00j4\x05\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06TATAGC\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate20\x94}\x94(\x8c\x05group\x94\x8c\x04NIID\x94\x8c\x04date\x94jH\x05\x00\x00C\x04\x07\xe9\x08\x14\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x1fflu-seqneut-2025_library_actual\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c"data/plates/2025-08-20_plate20.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j7\x03\x00\x00M\xf4\x01j8\x03\x00\x00G?tz\xe1G\xae\x14{j9\x03\x00\x00}\x94(j;\x03\x00\x00G?\x1a6\xe2\xeb\x1cC-j<\x03\x00\x00K\x04j=\x03\x00\x00K\x02uj>\x03\x00\x00}\x94(j@\x03\x00\x00G?tz\xe1G\xae\x14{jA\x03\x00\x00K\x04jB\x03\x00\x00K\x02ujC\x03\x00\x00M\xe8\x03jD\x03\x00\x00KdjE\x03\x00\x00K\x03jF\x03\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(jI\x03\x00\x00K\x01jJ\x03\x00\x00j.\x05\x00\x00jL\x03\x00\x00K\x00jM\x03\x00\x00j/\x05\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(jQ\x03\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00jR\x03\x00\x00}\x94(jT\x03\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00jU\x03\x00\x00G?\xc3333333ujV\x03\x00\x00j3\x05\x00\x00jX\x03\x00\x00j4\x05\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06CGAGCT\x94\x8c\x12upstream2_mismatch\x94K\x01uuu\x8c\x14miscellaneous_plates\x94}\x94(\x8c\x1520250716_initial_pool\x94}\x94(\x8c\x04date\x94jH\x05\x00\x00C\x04\x07\xe9\x07\x10\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c!flu-seqneut-2025_library_designed\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c5data/miscellaneous_plates/2025-07-16_initial_pool.csv\x94\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06GCTACA\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x1620250723_balanced_pool\x94}\x94(\x8c\x04date\x94jH\x05\x00\x00C\x04\x07\xe9\x07\x17\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c!flu-seqneut-2025_library_designed\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c8data/miscellaneous_plates/2025-07-23_balanced_repool.csv\x94\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06GCTACA\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c(20250723_H3_and_partial_H1_balanced_pool\x94}\x94(\x8c\x04date\x94jH\x05\x00\x00C\x04\x07\xe9\x07\x17\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c!flu-seqneut-2025_library_designed\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8cJdata/miscellaneous_plates/2025-07-23_H3_and_partial_H1_balanced_repool.csv\x94\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06GCTACA\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x1620250807_balanced_pool\x94}\x94(\x8c\x04date\x94jH\x05\x00\x00C\x04\x07\xe9\x08\x07\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c!flu-seqneut-2025_library_designed\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c8data/miscellaneous_plates/2025-08-07_balanced_repool.csv\x94\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06GCTACA\x94\x8c\x12upstream2_mismatch\x94K\x01uuuu\x8c\x04rule\x94\x8c\rprocess_plate\x94\x8c\x0fbench_iteration\x94N\x8c\tscriptdir\x94\x8c`/fh/fast/bloom_j/computational_notebooks/jbloom/2025/flu-seqneut-2025/seqneut-pipeline/notebooks\x94ub.');del script;from snakemake.logging import logger;from snakemake.script import snakemake;import os; os.chdir(r'/fh/fast/bloom_j/computational_notebooks/jbloom/2025/flu-seqneut-2025');
######## snakemake preamble end #########
Process plate counts to get fraction infectivities and fit curves¶
This notebook is designed to be run using snakemake
, and analyzes a plate of sequencing-based neutralization assays.
The plots generated by this notebook are interactive, so you can mouseover points for details, use the mouse-scroll to zoom and pan, and use interactive dropdowns at the bottom of the plots.
Setup¶
Import Python modules:
import pickle
import sys
import warnings
import altair as alt
import matplotlib.pyplot as plt
import matplotlib.style
import neutcurve
from neutcurve.colorschemes import CBPALETTE, CBMARKERS
import numpy
import pandas as pd
import ruamel.yaml as yaml
_ = alt.data_transformers.disable_max_rows()
# avoid clutter w RuntimeWarning during curve fitting
warnings.filterwarnings("ignore", category=RuntimeWarning)
# faster plotting of neut curves
matplotlib.style.use("fast")
Get the variables passed by snakemake
:
count_csvs = snakemake.input.count_csvs
fate_csvs = snakemake.input.fate_csvs
notebook_funcs = snakemake.input.notebook_funcs
qc_drops_yaml = snakemake.output.qc_drops
frac_infectivity_csv = snakemake.output.frac_infectivity_csv
fits_csv = snakemake.output.fits_csv
fits_pickle = snakemake.output.fits_pickle
viral_barcodes = snakemake.params.viral_barcodes
neut_standard_barcodes = snakemake.params.neut_standard_barcodes
samples = snakemake.params.samples
plate = snakemake.wildcards.plate
plate_params = snakemake.params.plate_params
curve_display_method = snakemake.params.curve_display_method
# get thresholds turning lists into tuples as needed
manual_drops = {
filter_type: [tuple(w) if isinstance(w, list) else w for w in filter_drops]
for (filter_type, filter_drops) in plate_params["manual_drops"].items()
}
group = plate_params["group"]
qc_thresholds = plate_params["qc_thresholds"]
curvefit_params = plate_params["curvefit_params"]
curvefit_qc = plate_params["curvefit_qc"]
curvefit_qc["barcode_serum_replicates_ignore_curvefit_qc"] = [
tuple(w) for w in curvefit_qc["barcode_serum_replicates_ignore_curvefit_qc"]
]
print(f"Processing {plate=}")
samples_df = pd.DataFrame(plate_params["samples"])
print(f"\nPlate has {len(samples)} samples (wells)")
assert all(
(len(samples_df) == samples_df[c].nunique())
for c in ["well", "sample", "sample_noplate"]
)
assert len(samples_df) == len(
samples_df.groupby(["serum_replicate", "dilution_factor"])
)
assert len(samples) == len(count_csvs) == len(fate_csvs) == len(samples_df)
for d, key, title in [
(manual_drops, "manual_drops", "Data manually specified to drop:"),
(qc_thresholds, "qc_thresholds", "QC thresholds applied to data:"),
(curvefit_params, "curvefit_params", "Curve-fitting parameters:"),
(curvefit_qc, "curvefit_qc", "Curve-fitting QC:"),
]:
print(f"\n{title}")
yaml.YAML(typ="rt").dump({key: d}, stream=sys.stdout)
Processing plate='plate14' Plate has 96 samples (wells) Data manually specified to drop: manual_drops: {}
QC thresholds applied to data: qc_thresholds: avg_barcode_counts_per_well: 500 min_neut_standard_frac_per_well: 0.005 no_serum_per_viral_barcode_filters: min_frac: 0.0001 max_fold_change: 4 max_wells: 2 per_neut_standard_barcode_filters: min_frac: 0.005 max_fold_change: 4 max_wells: 2 min_neut_standard_count_per_well: 1000 min_no_serum_count_per_viral_barcode_well: 100 max_frac_infectivity_per_viral_barcode_well: 3 min_dilutions_per_barcode_serum_replicate: 6
Curve-fitting parameters: curvefit_params: frac_infectivity_ceiling: 1 fixtop: - 0.6 - 1 fixbottom: 0 fixslope: - 0.8 - 10
Curve-fitting QC: curvefit_qc: max_frac_infectivity_at_least: 0.0 goodness_of_fit: min_R2: 0.5 max_RMSD: 0.15 serum_replicates_ignore_curvefit_qc: [] barcode_serum_replicates_ignore_curvefit_qc: []
Load the notebook functions:
print(f"Loading {notebook_funcs=}")
%run {notebook_funcs}
Loading notebook_funcs='/home/jbloom/.cache/snakemake/snakemake/source-cache/runtime-cache/tmpfro_n8p6/file/fh/fast/bloom_j/computational_notebooks/jbloom/2025/flu-seqneut-2025/seqneut-pipeline/notebook_funcs.py'
Set up dictionary to keep track of wells, barcodes, well-barcodes, and serum-replicates that are dropped:
qc_drops = {
"wells": {},
"barcodes": {},
"barcode_wells": {},
"barcode_serum_replicates": {},
"serum_replicates": {},
}
assert set(manual_drops).issubset(
qc_drops
), f"{manual_drops.keys()=}, {qc_drops.keys()}"
Statistics on barcode-parsing for each sample¶
Make interactive chart of the "fates" of the sequencing reads parsed for each sample on the plate.
If most sequencing reads are not "valid barcodes", this could potentially indicate some problem in the sequencing or barcode set you are parsing.
Potential fates are:
- valid barcode: barcode that matches a known virus or neutralization standard, we hope most reads are this.
- invalid barcode: a barcode with proper flanking sequences, but does not match a known virus or neutralization standard. If you have a lot of reads of this type, it is probably a good idea to look at the invalid barcode CSVs (in the
./results/barcode_invalid/
subdirectory created by the pipeline) to see what these invalid barcodes are. - unparseable barcode: could not parse a barcode from this read as there was not a sequence of the correct length with the appropriate flanking sequence.
- invalid outer flank: if using an outer upstream or downstream region (
upstream2
ordownstream2
for the illuminabarcodeparser), reads that are otherwise valid except for this outer flank. Typically you would be usingupstream2
if you have a plate index embedded in your primer, and reads with this classification correspond to a different index than the one for this plate. - low quality barcode: low-quality or
N
nucleotides in barcode, could indicate problem with sequencing. - failed chastity filter: reads that failed the Illumina chastity filter, if these are reported in the FASTQ (they may not be).
Also, if the number of reads per sample is very uneven, that could indicate that you did not do a good job of balancing the different samples in the Illumina sequencing.
fates = (
pd.concat([pd.read_csv(f).assign(sample=s) for f, s in zip(fate_csvs, samples)])
.merge(samples_df, validate="many_to_one", on="sample")
.assign(
fate_counts=lambda x: x.groupby("fate")["count"].transform("sum"),
sample_well=lambda x: x["sample_noplate"] + " (" + x["well"] + ")",
)
.query("fate_counts > 0")[ # only keep fates with at least one count
["fate", "count", "well", "serum_replicate", "sample_well", "dilution_factor"]
]
)
assert len(fates) == len(fates.drop_duplicates())
serum_replicates = sorted(fates["serum_replicate"].unique())
sample_wells = list(
fates.sort_values(["serum_replicate", "dilution_factor"])["sample_well"]
)
serum_selection = alt.selection_point(
fields=["serum_replicate"],
bind=alt.binding_select(
options=[None] + serum_replicates,
labels=["all"] + serum_replicates,
name="serum",
),
)
fates_chart = (
alt.Chart(fates)
.add_params(serum_selection)
.transform_filter(serum_selection)
.encode(
alt.X("count", scale=alt.Scale(nice=False, padding=3)),
alt.Y(
"sample_well",
title=None,
sort=sample_wells,
),
alt.Color("fate", sort=sorted(fates["fate"].unique(), reverse=True)),
alt.Order("fate", sort="descending"),
tooltip=fates.columns.tolist(),
)
.mark_bar(height={"band": 0.85})
.properties(
height=alt.Step(10),
width=200,
title=f"Barcode parsing for {plate}",
)
.configure_axis(grid=False)
)
fates_chart
Read barcode counts and apply manually specified drops¶
Read the counts per barcode:
# get barcode counts
counts = (
pd.concat([pd.read_csv(c).assign(sample=s) for c, s in zip(count_csvs, samples)])
.merge(samples_df, validate="many_to_one", on="sample")
.drop(columns=["replicate", "plate", "fastq"])
.assign(sample_well=lambda x: x["sample_noplate"] + " (" + x["well"] + ")")
)
# classify barcodes as viral or neut standard
barcode_class = pd.concat(
[
pd.DataFrame(viral_barcodes).assign(neut_standard=False),
pd.DataFrame(neut_standard_barcodes).assign(neut_standard=True, strain=pd.NA),
],
ignore_index=True,
)
# merge counts and classification of barcodes
assert set(counts["barcode"]) == set(barcode_class["barcode"])
counts = counts.merge(barcode_class, on="barcode", validate="many_to_one")
assert set(sample_wells) == set(counts["sample_well"])
assert set(serum_replicates) == set(counts["serum_replicate"])
Apply any manually specified data drops:
for filter_type, filter_drops in manual_drops.items():
print(f"\nDropping {len(filter_drops)} {filter_type} specified in manual_drops")
assert filter_type in qc_drops
qc_drops[filter_type].update(
{w: "manual_drop" for w in filter_drops if not isinstance(w, list)}
)
if filter_type == "barcode_wells":
counts = counts[
~counts.assign(
barcode_well=lambda x: x.apply(
lambda r: (r["barcode"], r["well"]), axis=1
)
)["barcode_well"].isin(qc_drops[filter_type])
]
elif filter_type == "barcode_serum_replicates":
counts = counts[
~counts.assign(
barcode_serum_replicate=lambda x: x.apply(
lambda r: (r["barcode"], r["serum_replicate"]), axis=1
)
)["barcode_serum_replicate"].isin(qc_drops[filter_type])
]
elif filter_type == "wells":
counts = counts[~counts["well"].isin(qc_drops[filter_type])]
elif filter_type == "barcodes":
counts = counts[~counts["barcode"].isin(qc_drops[filter_type])]
elif filter_type == "serum_replicates":
counts = counts[~counts["serum_replicate"].isin(qc_drops[filter_type])]
elif filter_type == "barcode_serum_replicates":
counts = counts[~counts["barcode_serum_replicate"].isin(qc_drops[filter_type])]
else:
assert filter_type in set(counts.columns)
counts = counts[~counts[filter_type].isin(qc_drops[filter_type])]
Average counts per barcode in each well¶
Plot average counts per barcode. If a sample has inadequate barcode counts, it may not have good enough statistics for accurate analysis, and a QC-threshold is applied:
avg_barcode_counts = (
counts.groupby(
["well", "serum_replicate", "sample_well"],
dropna=False,
as_index=False,
)
.aggregate(avg_count=pd.NamedAgg("count", "mean"))
.assign(
fails_qc=lambda x: (
x["avg_count"] < qc_thresholds["avg_barcode_counts_per_well"]
),
)
)
avg_barcode_counts_chart = (
alt.Chart(avg_barcode_counts)
.add_params(serum_selection)
.transform_filter(serum_selection)
.encode(
alt.X(
"avg_count",
title="average barcode counts per well",
scale=alt.Scale(nice=False, padding=3),
),
alt.Y("sample_well", sort=sample_wells),
alt.Color(
"fails_qc",
title=f"fails {qc_thresholds['avg_barcode_counts_per_well']=}",
legend=alt.Legend(titleLimit=500),
),
tooltip=[
alt.Tooltip(c, format=".3g") if avg_barcode_counts[c].dtype == float else c
for c in avg_barcode_counts.columns
],
)
.mark_bar(height={"band": 0.85})
.properties(
height=alt.Step(10),
width=250,
title=f"Average barcode counts per well for {plate}",
)
.configure_axis(grid=False)
)
display(avg_barcode_counts_chart)
# drop wells failing QC
avg_barcode_counts_per_well_drops = list(avg_barcode_counts.query("fails_qc")["well"])
print(
f"\nDropping {len(avg_barcode_counts_per_well_drops)} wells for failing "
f"{qc_thresholds['avg_barcode_counts_per_well']=}: "
+ str(avg_barcode_counts_per_well_drops)
)
qc_drops["wells"].update(
{w: "avg_barcode_counts_per_well" for w in avg_barcode_counts_per_well_drops}
)
counts = counts[~counts["well"].isin(qc_drops["wells"])]
Dropping 2 wells for failing qc_thresholds['avg_barcode_counts_per_well']=500: ['C10', 'C12']
Fraction of counts from neutralization standard¶
Determine the fraction of counts from the neutralization standard in each sample, and make sure this fraction passess the QC threshold.
neut_standard_fracs = (
counts.assign(
neut_standard_count=lambda x: x["count"] * x["neut_standard"].astype(int)
)
.groupby(
["well", "serum_replicate", "sample_well"],
dropna=False,
as_index=False,
)
.aggregate(
total_count=pd.NamedAgg("count", "sum"),
neut_standard_count=pd.NamedAgg("neut_standard_count", "sum"),
)
.assign(
neut_standard_frac=lambda x: x["neut_standard_count"] / x["total_count"],
fails_qc=lambda x: (
x["neut_standard_frac"] < qc_thresholds["min_neut_standard_frac_per_well"]
),
)
)
neut_standard_fracs_chart = (
alt.Chart(neut_standard_fracs)
.add_params(serum_selection)
.transform_filter(serum_selection)
.encode(
alt.X(
"neut_standard_frac",
title="frac counts from neutralization standard per well",
scale=alt.Scale(nice=False, padding=3),
),
alt.Y("sample_well", sort=sample_wells),
alt.Color(
"fails_qc",
title=f"fails {qc_thresholds['min_neut_standard_frac_per_well']=}",
legend=alt.Legend(titleLimit=500),
),
tooltip=[
alt.Tooltip(c, format=".3g") if neut_standard_fracs[c].dtype == float else c
for c in neut_standard_fracs.columns
],
)
.mark_bar(height={"band": 0.85})
.properties(
height=alt.Step(10),
width=250,
title=f"Neutralization-standard fracs per well for {plate}",
)
.configure_axis(grid=False)
.configure_legend(titleLimit=1000)
)
display(neut_standard_fracs_chart)
# drop wells failing QC
min_neut_standard_frac_per_well_drops = list(
neut_standard_fracs.query("fails_qc")["well"]
)
print(
f"\nDropping {len(min_neut_standard_frac_per_well_drops)} wells for failing "
f"{qc_thresholds['min_neut_standard_frac_per_well']=}: "
+ str(min_neut_standard_frac_per_well_drops)
)
qc_drops["wells"].update(
{
w: "min_neut_standard_frac_per_well"
for w in min_neut_standard_frac_per_well_drops
}
)
counts = counts[~counts["well"].isin(qc_drops["wells"])]
Dropping 0 wells for failing qc_thresholds['min_neut_standard_frac_per_well']=0.005: []
Consistency and minimum fractions for barcodes¶
We examine the fraction of counts attributable to each barcode. We do this splitting the data two ways:
Looking at all viral (but not neut-standard) barcodes only for the no-serum samples (wells).
Looking at just the neut-standard barcodes for all samples (wells).
The reasons is that if the experiment is set up perfectly, these fractions should be the same across all samples for each barcode. (We do not expect viral barcodes to have consistent fractions across no-serum samples as they will be neutralized differently depending on strain).
We plot these fractions in interactive plots (you can mouseover points and zoom) so you can identify barcodes that fail the expected consistency QC thresholds.
We also make sure the barcodes meet specified QC minimum thresholds for all samples, and flag any that do not.
barcode_selection = alt.selection_point(fields=["barcode"], on="mouseover", empty=False)
# look at all samples for neut standard barcodes, or no-serum samples for all barcodes
for is_neut_standard, df in counts.groupby("neut_standard"):
if is_neut_standard:
print(
f"\n\n{'=' * 89}\nAnalyzing neut-standard barcodes from all samples (wells)"
)
qc_name = "per_neut_standard_barcode_filters"
else:
print(f"\n\n{'=' * 89}\nAnalyzing all barcodes from no-serum samples (wells)")
qc_name = "no_serum_per_viral_barcode_filters"
df = df.query("serum == 'none'")
df = df.assign(
sample_counts=lambda x: x.groupby("sample")["count"].transform("sum"),
count_frac=lambda x: x["count"] / x["sample_counts"],
median_count_frac=lambda x: x.groupby("barcode")["count_frac"].transform(
"median"
),
fold_change_from_median=lambda x: numpy.where(
x["count_frac"] > x["median_count_frac"],
x["count_frac"] / x["median_count_frac"],
x["median_count_frac"] / x["count_frac"],
),
)[
[
"barcode",
"count",
"sample_well",
"count_frac",
"fold_change_from_median",
]
+ ([] if is_neut_standard else ["strain"])
]
# barcode fails QC if fails in sufficient wells
qc = qc_thresholds[qc_name]
print(f"Apply QC {qc_name}: {qc}\n")
fails_qc = (
df.assign(
fails_qc=lambda x: ~(
(x["count_frac"] >= qc["min_frac"])
& (x["fold_change_from_median"] <= qc["max_fold_change"])
),
)
.groupby("barcode", as_index=False)
.aggregate(n_wells_fail_qc=pd.NamedAgg("fails_qc", "sum"))
.assign(fails_qc=lambda x: x["n_wells_fail_qc"] >= qc["max_wells"])[
["barcode", "fails_qc"]
]
)
df = df.merge(fails_qc, on="barcode", validate="many_to_one")
# make chart
evenness_chart = (
alt.Chart(df)
.add_params(barcode_selection)
.encode(
alt.X(
"count_frac",
title=(
"barcode's fraction of neut standard counts"
if is_neut_standard
else "barcode's fraction of non-neut standard counts"
),
scale=alt.Scale(nice=False, padding=5),
),
alt.Y("sample_well", sort=sample_wells),
alt.Fill(
"fails_qc",
title=f"fails {qc_name}",
legend=alt.Legend(titleLimit=500),
),
strokeWidth=alt.condition(barcode_selection, alt.value(2), alt.value(0)),
size=alt.condition(barcode_selection, alt.value(60), alt.value(35)),
tooltip=[
alt.Tooltip(c, format=".2g") if df[c].dtype == float else c
for c in df.columns
],
)
.mark_circle(fillOpacity=0.45, stroke="black", strokeOpacity=1)
.properties(
height=alt.Step(10),
width=300,
title=alt.TitleParams(
(
f"{plate} all samples, neut-standard barcodes"
if is_neut_standard
else f"{plate} no-serum samples, all barcodes"
),
subtitle="x-axis is zoomable (use mouse scroll/pan)",
),
)
.configure_axis(grid=False)
.configure_legend(titleLimit=1000)
.interactive()
)
display(evenness_chart)
# drop barcodes failing QC
barcode_drops = list(fails_qc.query("fails_qc")["barcode"])
print(
f"\nDropping {len(barcode_drops)} barcodes for failing {qc=}: {barcode_drops}"
)
qc_drops["barcodes"].update(
{bc: "min_neut_standard_frac_per_well" for bc in barcode_drops}
)
counts = counts[~counts["barcode"].isin(qc_drops["barcodes"])]
========================================================================================= Analyzing all barcodes from no-serum samples (wells) Apply QC no_serum_per_viral_barcode_filters: {'min_frac': 0.0001, 'max_fold_change': 4, 'max_wells': 2}
Dropping 1 barcodes for failing qc={'min_frac': 0.0001, 'max_fold_change': 4, 'max_wells': 2}: ['CTCTTACGCTCCTACG'] ========================================================================================= Analyzing neut-standard barcodes from all samples (wells) Apply QC per_neut_standard_barcode_filters: {'min_frac': 0.005, 'max_fold_change': 4, 'max_wells': 2}
Dropping 0 barcodes for failing qc={'min_frac': 0.005, 'max_fold_change': 4, 'max_wells': 2}: []
Compute fraction infectivity¶
The fraction infectivity for viral barcode $v_b$ in sample $s$ is computed as: $$ F_{v_b,s} = \frac{c_{v_b,s} / \left(\sum_{n_b} c_{n_b,s}\right)}{{\rm median}_{s_0}\left[ c_{v_b,s_0} / \left(\sum_{n_b} c_{n_b,s_0}\right)\right]} $$ where
- $c_{v_b,s}$ is the counts of viral barcode $v_b$ in sample $s$.
- $\sum_{n_b} c_{n_b,s}$ is the sum of the counts for all neutralization standard barcodes $n_b$ for sample $s$.
- $c_{v_b,s_0}$ is the counts of viral barcode $v_b$ in no-serum sample $s_0$.
- $\sum_{n_b} c_{n_b,s_0}$ is the sum of the counts for all neutralization standard barcodes $n_b$ for no-serum sample $s_0$.
- ${\rm median}_{s_0}\left[ c_{v_b,s_0} / \left(\sum_{n_b} c_{n_b,s_0}\right)\right]$ is the median taken across all no-serum samples of the counts of viral barcode $v_b$ versus the total counts for all neutralization standard barcodes.
First, compute the total neutralization-standard counts for each sample (well). Plot these, and drop any wells that do not meet the QC threshold.
neut_standard_counts = (
counts.query("neut_standard")
.groupby(
["well", "serum_replicate", "sample_well", "dilution_factor"],
dropna=False,
as_index=False,
)
.aggregate(neut_standard_count=pd.NamedAgg("count", "sum"))
.assign(
fails_qc=lambda x: (
x["neut_standard_count"] < qc_thresholds["min_neut_standard_count_per_well"]
),
)
)
neut_standard_counts_chart = (
alt.Chart(neut_standard_counts)
.add_params(serum_selection)
.transform_filter(serum_selection)
.encode(
alt.X(
"neut_standard_count",
title="counts from neutralization standard",
scale=alt.Scale(nice=False, padding=3),
),
alt.Y("sample_well", sort=sample_wells),
alt.Color(
"fails_qc",
title=f"fails {qc_thresholds['min_neut_standard_count_per_well']=}",
legend=alt.Legend(titleLimit=500),
),
tooltip=[
(
alt.Tooltip(c, format=".3g")
if neut_standard_counts[c].dtype == float
else c
)
for c in neut_standard_counts.columns
],
)
.mark_bar(height={"band": 0.85})
.properties(
height=alt.Step(10),
width=250,
title=f"Neutralization-standard counts for {plate}",
)
.configure_axis(grid=False)
.configure_legend(titleLimit=1000)
)
display(neut_standard_counts_chart)
# drop wells failing QC
min_neut_standard_count_per_well_drops = list(
neut_standard_counts.query("fails_qc")["well"]
)
print(
f"\nDropping {len(min_neut_standard_count_per_well_drops)} wells for failing "
f"{qc_thresholds['min_neut_standard_count_per_well']=}: "
+ str(min_neut_standard_count_per_well_drops)
)
qc_drops["wells"].update(
{
w: "min_neut_standard_count_per_well"
for w in min_neut_standard_count_per_well_drops
}
)
neut_standard_counts = neut_standard_counts[
~neut_standard_counts["well"].isin(qc_drops["wells"])
]
counts = counts[~counts["well"].isin(qc_drops["wells"])]
Dropping 0 wells for failing qc_thresholds['min_neut_standard_count_per_well']=1000: []
Compute and plot the no-serum sample viral barcode counts and check if they pass the QC filters.
no_serum_counts = (
counts.query("serum == 'none'")
.query("not neut_standard")
.merge(neut_standard_counts, validate="many_to_one")[
["barcode", "strain", "well", "sample_well", "count", "neut_standard_count"]
]
.assign(
fails_qc=lambda x: (
x["count"] <= qc_thresholds["min_no_serum_count_per_viral_barcode_well"]
),
)
)
strains = sorted(no_serum_counts["strain"].unique())
strain_selection_dropdown = alt.selection_point(
fields=["strain"],
bind=alt.binding_select(
options=[None] + strains,
labels=["all"] + strains,
name="virus strain",
),
)
# make chart
no_serum_counts_plot_df = no_serum_counts.drop(columns=["well", "neut_standard_count"])
no_serum_counts_chart = (
alt.Chart(no_serum_counts_plot_df)
.add_params(barcode_selection, strain_selection_dropdown)
.transform_filter(strain_selection_dropdown)
.encode(
alt.X(
"count", title="viral barcode count", scale=alt.Scale(nice=False, padding=5)
),
alt.Y("sample_well", sort=sample_wells),
alt.Fill(
"fails_qc",
title=f"fails {qc_thresholds['min_no_serum_count_per_viral_barcode_well']=}",
legend=alt.Legend(titleLimit=500),
),
strokeWidth=alt.condition(barcode_selection, alt.value(2), alt.value(0)),
size=alt.condition(barcode_selection, alt.value(60), alt.value(35)),
tooltip=no_serum_counts_plot_df.columns.tolist(),
)
.mark_circle(fillOpacity=0.6, stroke="black", strokeOpacity=1)
.properties(
height=alt.Step(10),
width=400,
title=f"{plate} viral barcode counts in no-serum samples",
)
.configure_axis(grid=False)
.configure_legend(titleLimit=1000)
.interactive()
)
display(no_serum_counts_chart)
# drop barcode / wells failing QC
min_no_serum_count_per_viral_barcode_well_drops = list(
no_serum_counts.query("fails_qc")[["barcode", "well"]].itertuples(
index=False, name=None
)
)
print(
f"\nDropping {len(min_no_serum_count_per_viral_barcode_well_drops)} barcode-wells for failing "
f"{qc_thresholds['min_no_serum_count_per_viral_barcode_well']=}: "
+ str(min_no_serum_count_per_viral_barcode_well_drops)
)
qc_drops["barcode_wells"].update(
{
w: "min_no_serum_count_per_viral_barcode_well"
for w in min_no_serum_count_per_viral_barcode_well_drops
}
)
no_serum_counts = no_serum_counts[
~no_serum_counts.assign(
barcode_well=lambda x: x.apply(lambda r: (r["barcode"], r["well"]), axis=1)
)["barcode_well"].isin(qc_drops["barcode_wells"])
]
counts = counts[
~counts.assign(
barcode_well=lambda x: x.apply(lambda r: (r["barcode"], r["well"]), axis=1)
)["barcode_well"].isin(qc_drops["barcode_wells"])
]
Dropping 4 barcode-wells for failing qc_thresholds['min_no_serum_count_per_viral_barcode_well']=100: [('GATTCAGATGCCCACC', 'A12'), ('CCTTTCTCAAAACATA', 'D12'), ('AGTCCTATCCTCAAAT', 'D12'), ('GATTCAGATGCCCACC', 'H12')]
Compute and plot the median ratio of viral barcode count to neut standard counts across no-serum samples. If library composition is equal, all of these values should be similar:
median_no_serum_ratio = (
no_serum_counts.assign(ratio=lambda x: x["count"] / x["neut_standard_count"])
.groupby(["barcode", "strain"], as_index=False)
.aggregate(median_no_serum_ratio=pd.NamedAgg("ratio", "median"))
)
strain_selection = alt.selection_point(fields=["strain"], on="mouseover", empty=False)
median_no_serum_ratio_chart = (
alt.Chart(median_no_serum_ratio)
.add_params(strain_selection)
.encode(
alt.X(
"median_no_serum_ratio",
title="median ratio of counts",
scale=alt.Scale(nice=False, padding=5),
),
alt.Y(
"barcode",
sort=alt.SortField("median_no_serum_ratio", order="descending"),
axis=alt.Axis(labelFontSize=5),
),
color=alt.condition(strain_selection, alt.value("orange"), alt.value("gray")),
tooltip=[
(
alt.Tooltip(c, format=".3g")
if median_no_serum_ratio[c].dtype == float
else c
)
for c in median_no_serum_ratio.columns
],
)
.mark_bar(height={"band": 0.85})
.properties(
height=alt.Step(5),
width=250,
title=f"{plate} no-serum median ratio viral barcode to neut-standard barcode",
)
.configure_axis(grid=False)
.configure_legend(titleLimit=1000)
)
display(median_no_serum_ratio_chart)
Compute the actual fraction infectivities. We compute both the raw fraction infectivities and the ones with the ceiling applied:
frac_infectivity = (
counts.query("not neut_standard")
.query("serum != 'none'")
.merge(median_no_serum_ratio, validate="many_to_one")
.merge(neut_standard_counts, validate="many_to_one")
.assign(
frac_infectivity_raw=lambda x: (
(x["count"] / x["neut_standard_count"]) / x["median_no_serum_ratio"]
),
frac_infectivity_ceiling=lambda x: x["frac_infectivity_raw"].clip(
upper=curvefit_params["frac_infectivity_ceiling"]
),
concentration=lambda x: 1 / x["dilution_factor"],
plate_barcode=lambda x: x["plate_replicate"] + "-" + x["barcode"],
)[
[
"barcode",
"plate_barcode",
"well",
"strain",
"serum",
"serum_replicate",
"dilution_factor",
"concentration",
"frac_infectivity_raw",
"frac_infectivity_ceiling",
]
]
)
assert len(
frac_infectivity.groupby(["serum", "plate_barcode", "dilution_factor"])
) == len(frac_infectivity)
assert frac_infectivity["dilution_factor"].notnull().all()
assert frac_infectivity["frac_infectivity_raw"].notnull().all()
assert frac_infectivity["frac_infectivity_ceiling"].notnull().all()
Plot the fraction infectivities, both the raw values and with the ceiling applied:
frac_infectivity_cols = {
"frac_infectivity_raw": "raw fraction infectivity",
"frac_infectivity_ceiling": f"fraction infectivity with ceiling at {curvefit_params['frac_infectivity_ceiling']}",
}
frac_infectivity_chart_df = frac_infectivity.assign(
fails_qc=lambda x: (
x["frac_infectivity_raw"]
> qc_thresholds["max_frac_infectivity_per_viral_barcode_well"]
),
)[
[
"barcode",
"strain",
"well",
"serum_replicate",
"dilution_factor",
"fails_qc",
*list(frac_infectivity_cols),
]
].rename(
columns=frac_infectivity_cols
)
# some manipulations to shrink data frame plotted by altair below by putting
# them in smaller data frames that are used via transform_lookup
barcode_lookup_df = frac_infectivity[["barcode", "strain"]].drop_duplicates()
assert len(barcode_lookup_df) == barcode_lookup_df["barcode"].nunique()
well_lookup_df = frac_infectivity[
["well", "serum_replicate", "dilution_factor"]
].drop_duplicates()
assert len(well_lookup_df) == well_lookup_df["well"].nunique()
frac_infectivity_chart_df = frac_infectivity_chart_df.drop(
columns=["strain", "serum_replicate", "dilution_factor"]
)
frac_infectivity_chart = (
alt.Chart(frac_infectivity_chart_df)
.transform_lookup(
lookup="barcode",
from_=alt.LookupData(barcode_lookup_df, key="barcode", fields=["strain"]),
)
.transform_lookup(
lookup="well",
from_=alt.LookupData(
well_lookup_df, key="well", fields=["serum_replicate", "dilution_factor"]
),
)
.transform_fold(
frac_infectivity_cols.values(), ["ceiling_applied", "frac_infectivity"]
)
.add_params(strain_selection_dropdown, barcode_selection)
.transform_filter(strain_selection_dropdown)
.encode(
alt.X(
"dilution_factor:Q",
title="dilution factor",
scale=alt.Scale(nice=False, padding=5, type="log"),
),
alt.Y(
"frac_infectivity:Q",
title="fraction infectivity",
scale=alt.Scale(nice=False, padding=5),
),
alt.Column(
"ceiling_applied:N",
sort="descending",
title=None,
header=alt.Header(labelFontSize=13, labelFontStyle="bold", labelPadding=2),
),
alt.Row(
"serum_replicate:N",
title=None,
spacing=3,
header=alt.Header(labelFontSize=13, labelFontStyle="bold"),
),
alt.Detail("barcode"),
alt.Shape(
"fails_qc",
title=f"fails {qc_thresholds['max_frac_infectivity_per_viral_barcode_well']=}",
legend=alt.Legend(titleLimit=500, orient="bottom"),
),
color=alt.condition(
barcode_selection, alt.value("black"), alt.value("MediumBlue")
),
strokeWidth=alt.condition(barcode_selection, alt.value(3), alt.value(1)),
opacity=alt.condition(barcode_selection, alt.value(1), alt.value(0.25)),
tooltip=[
(
alt.Tooltip(c, format=".3g")
if frac_infectivity_chart_df[c].dtype == float
else c
)
for c in frac_infectivity_chart_df.columns
]
+ [
alt.Tooltip("strain:N"),
alt.Tooltip("serum_replicate:N"),
alt.Tooltip("dilution_factor:Q"),
],
)
.mark_line(point=True)
.properties(
height=150,
width=250,
title=f"Fraction infectivities for {plate}",
)
.interactive(bind_x=False)
.configure_axis(grid=False)
.configure_legend(titleLimit=1000)
.configure_point(size=50)
.resolve_scale(x="independent", y="independent")
)
display(frac_infectivity_chart)
# drop barcode / wells failing QC
max_frac_infectivity_per_viral_barcode_well_drops = list(
frac_infectivity_chart_df.query("fails_qc")[["barcode", "well"]]
.drop_duplicates()
.itertuples(index=False, name=None)
)
print(
f"\nDropping {len(max_frac_infectivity_per_viral_barcode_well_drops)} barcode-wells for failing "
f"{qc_thresholds['max_frac_infectivity_per_viral_barcode_well']=}: "
+ str(max_frac_infectivity_per_viral_barcode_well_drops)
)
qc_drops["barcode_wells"].update(
{
w: "max_frac_infectivity_per_viral_barcode_well"
for w in max_frac_infectivity_per_viral_barcode_well_drops
}
)
frac_infectivity = frac_infectivity[
~frac_infectivity.assign(
barcode_well=lambda x: x.apply(lambda r: (r["barcode"], r["well"]), axis=1)
)["barcode_well"].isin(qc_drops["barcode_wells"])
]
Dropping 232 barcode-wells for failing qc_thresholds['max_frac_infectivity_per_viral_barcode_well']=3: [('AGTCCTATCCTCAAAT', 'F1'), ('ACAAAGTCTCGAGAAG', 'G1'), ('GAGGGGATACGTCACC', 'H1'), ('AGTTTTTATAACTTGC', 'H1'), ('CCCCTCCTCTAAAGTT', 'G2'), ('TCTCAGCTCTTAGCCG', 'G2'), ('TAGCTGATAGTAACTC', 'H2'), ('AATGCGAGCATGTCAA', 'H2'), ('GACCCCTTGTAAGATG', 'H2'), ('AGTCCTATCCTCAAAT', 'H2'), ('GATCGCCACTGATAAG', 'D3'), ('TGTTGAGCCAGTCTGA', 'H3'), ('AACACGTAGAACCGCC', 'H3'), ('GACCCCTTGTAAGATG', 'H3'), ('TCGAGTTAATATGCGC', 'H3'), ('TTAATGTAGCCGCTCC', 'H3'), ('AGACCATCGCACCCAA', 'C4'), ('CACCAATCTTCGAACT', 'D4'), ('ATAGAATCGCAAATTA', 'F4'), ('GATCACGCAGAAAAAG', 'F4'), ('ATCAGGATAATCGCGC', 'F4'), ('GACCCCTTGTAAGATG', 'G4'), ('AACCACCCCAGAGATG', 'H4'), ('CAATTCGCCGTTCCCC', 'C5'), ('ATAGAAAATTATCCGC', 'F5'), ('CACGGCCGGCGAACTC', 'F5'), ('CGATCTTTACGAAAAA', 'G5'), ('CACGGGCTAATGTCTC', 'H5'), ('GACCCCTTGTAAGATG', 'H5'), ('GACCCCTTGTAAGATG', 'C6'), ('CCTTTCTCAAAACATA', 'D6'), ('ACGTCCATTAAGATCA', 'E6'), ('AGGTTCAGACTCTTGC', 'F6'), ('GATCACGCAGAAAAAG', 'F6'), ('GCGAAGTTTCATAGCG', 'F6'), ('TAGCTGATAGTAACTC', 'F6'), ('CCTTTCTCAAAACATA', 'F6'), ('GATTCAGATGCCCACC', 'F6'), ('CACCAATCTTCGAACT', 'G6'), ('CAGAACCTCGTTGTCT', 'H6'), ('CATGGGAATTGCCACT', 'H6'), ('AATGAAACAATCGAAC', 'H6'), ('TTTCAGCGTTGTTTTG', 'H6'), ('ACAAGATTCGGGGGAC', 'H6'), ('CGTTCAGCGATAACGG', 'H6'), ('GTTATTATGACTTCAT', 'H6'), ('CTATCTTAATCTACAG', 'H6'), ('GAAGAAACTATAACCA', 'H6'), ('TGACAACAATACAAAT', 'H6'), ('GTAGAACTGCGGCCCC', 'H6'), ('AGGAAAGAAACTGGAG', 'H6'), ('AGTATTTGCGCTTCAA', 'H6'), ('GCAACGAGGTGTAACC', 'H6'), ('TTTCACAGAACCTATC', 'H6'), ('AAAGCTCTTTTCGTTC', 'H6'), ('ATGGGATTGGAGAAAC', 'H6'), ('TTGACTCACCGAATAA', 'H6'), ('GCATGGAACTAACTCC', 'H6'), ('ATGGCCCACGGGCATA', 'H6'), ('AAGTTAAGAGAAAGTT', 'H6'), ('TATCCAAGGGACGGAC', 'H6'), ('ACTCTGGCTCGCTAAT', 'H6'), ('CGCAGCATTGGTCGCC', 'H6'), ('TAACGTGATTTCTCGA', 'H6'), ('GTGCGATTGTCCGGAA', 'H6'), ('ACAAAGTCTCGAGAAG', 'H6'), ('AAATTCACAATATCCA', 'H6'), ('CGTTTTTGGTTCGAGG', 'H6'), ('GTAAGCTTCATGGAGT', 'H6'), ('GTACCCAGTTCCTGCG', 'H6'), ('TCTTAGTCCTCGTATG', 'H6'), ('CGTACGTATGTCCCAG', 'H6'), ('TCTTGACATAGCGATG', 'H6'), ('AGATCCACCCTATAGT', 'H6'), ('AGGTTCAGACTCTTGC', 'H6'), ('GTGGTATCAAGCCGGG', 'H6'), ('TGCAGTGGTATACATA', 'H6'), ('AGTAAACATGCATTGG', 'H6'), ('AACTTCCGTCGCCTGA', 'H6'), ('TTGAAAAAATCATAAA', 'H6'), ('CCGGATAAATCAGAAC', 'H6'), ('AGATCCCAGGTCCTTT', 'H6'), ('GAAAGTCCCTATGATG', 'H6'), ('AGCTCCTGGGGTATCA', 'H6'), ('ACACGGGTTGGCTGTA', 'H6'), ('ATTTAAATTCGAGGAC', 'H6'), ('AGACCGCCAGTTTCGT', 'H6'), ('TCGAACGAAGTAGGAG', 'H6'), ('TCTTTACCACTGCATC', 'H6'), ('AATTCGTGAGTACTAG', 'H6'), ('CCAAGCTTGGCGCATC', 'H6'), ('AGAGCTAAAAAGAGGA', 'H6'), ('TGCGGTGGTCGATCCG', 'H6'), ('ACAGTCCACCATTGAG', 'H6'), ('GATCACGCAGAAAAAG', 'H6'), ('TGTCCGGATAAAGTAG', 'H6'), ('TTGGGCACTAAATTAA', 'H6'), ('GACAAAAGGGACATAT', 'H6'), ('CTGGAGGCCTGGCCCC', 'H6'), ('TCTAACTCTCGCGGCA', 'H6'), ('ATACACGAGGTTGTGA', 'H6'), ('ATCAGGATAATCGCGC', 'H6'), ('TGTTGAGCCAGTCTGA', 'H6'), ('TGCTATTCCGGCGCGG', 'H6'), ('AGGACTATAGTTGGCA', 'H6'), ('ACGTCCATTAAGATCA', 'H6'), ('TATTAAGAGAAGTGCG', 'H6'), ('ATAACTGAGGGCATTG', 'H6'), ('GAGGGGATACGTCACC', 'H6'), ('GCGAAGTTTCATAGCG', 'H6'), ('TAGCTGATAGTAACTC', 'H6'), ('TATATTAGTAACATAA', 'H6'), ('TTTATATCGAGATTCA', 'H6'), ('TCGCTTCAACTAAAAA', 'H6'), ('AAGGTCCCTATGTAAT', 'H6'), ('CTCAAATAATTGGCGC', 'H6'), ('ACAGTACGATCTACGC', 'H6'), ('CACGGCCGGCGAACTC', 'H6'), ('AAAGTAGCAGAGGATT', 'H6'), ('AATGCGAGCATGTCAA', 'H6'), ('CACGGGCTAATGTCTC', 'H6'), ('CGACTCCACGGACGCC', 'H6'), ('GCCGCTGCGGCGTGTG', 'H6'), ('CGAAACACGTCCCAGT', 'H6'), ('CCGCGCACGTTTAGAG', 'H6'), ('AGTTTTTATAACTTGC', 'H6'), ('ATCCGATTTAAAGGCA', 'H6'), ('ATGGTTTTACGTCCAT', 'H6'), ('GAAATCCCCAAATAAC', 'H6'), ('GACCCCTTGTAAGATG', 'H6'), ('TTAATGTAGCCGCTCC', 'H6'), ('AGTCCTATCCTCAAAT', 'H6'), ('TCGAGTTAATATGCGC', 'H6'), ('TACAAGAGAGGGGTCC', 'H6'), ('GATTCAGATGCCCACC', 'H6'), ('GAAATCCCCAAATAAC', 'D7'), ('ACAGTCCACCATTGAG', 'F7'), ('CGAAACACGTCCCAGT', 'F7'), ('TCGAGTTAATATGCGC', 'F7'), ('AGTTTTTATAACTTGC', 'G7'), ('GACAAAAGGGACATAT', 'H7'), ('GAGGGGATACGTCACC', 'H7'), ('TGTCCGGATAAAGTAG', 'H7'), ('GAGCTTGCTATGGATC', 'H7'), ('ATGGTTTTACGTCCAT', 'H7'), ('GACCCCTTGTAAGATG', 'H7'), ('AACCACCCCAGAGATG', 'D8'), ('ATGGTTTTACGTCCAT', 'D8'), ('CACGGGCTAATGTCTC', 'D8'), ('GACCCCTTGTAAGATG', 'D8'), ('AGTTTTTATAACTTGC', 'D8'), ('GACCCCTTGTAAGATG', 'E8'), ('TCTAACTCTCGCGGCA', 'F8'), ('GACCCCTTGTAAGATG', 'F8'), ('TCGAGTTAATATGCGC', 'F8'), ('GATTCAGATGCCCACC', 'F8'), ('TACATACCGACGCAGT', 'H8'), ('ACAAAGTCTCGAGAAG', 'H8'), ('AAAGTAGCAGAGGATT', 'H8'), ('CCTTTCTCAAAACATA', 'H8'), ('TCGAGTTAATATGCGC', 'C9'), ('AGTTTTTATAACTTGC', 'E9'), ('ATCAGGATAATCGCGC', 'E9'), ('CACCAATCTTCGAACT', 'E9'), ('GATTCAGATGCCCACC', 'E9'), ('AATTCGTGAGTACTAG', 'F9'), ('TTAATGTAGCCGCTCC', 'F9'), ('GATTCAGATGCCCACC', 'F9'), ('TGGAATCGTCACCGAT', 'G9'), ('GCGAAGTTTCATAGCG', 'H9'), ('TGTCCGGATAAAGTAG', 'H9'), ('GACCCCTTGTAAGATG', 'H9'), ('AGTTTTTATAACTTGC', 'H9'), ('TTAATGTAGCCGCTCC', 'H9'), ('CTATCTTAATCTACAG', 'D10'), ('AAGTATTGCTACACAT', 'D10'), ('GTAGAACTGCGGCCCC', 'D10'), ('ACTCTGGCTCGCTAAT', 'D10'), ('GCATGGAACTAACTCC', 'D10'), ('TAACGTGATTTCTCGA', 'D10'), ('TGCTATTCCGGCGCGG', 'D10'), ('ATTTAAATTCGAGGAC', 'D10'), ('ACAGTCCACCATTGAG', 'D10'), ('CAAAAGCAGCACGATA', 'D10'), ('TGCAGTGGTATACATA', 'D10'), ('ACCGATTCACGAATAA', 'D10'), ('TCTTTACCACTGCATC', 'D10'), ('ATCAGGATAATCGCGC', 'D10'), ('ACCCCCGGAGCTTGGC', 'D10'), ('GCGAAGTTTCATAGCG', 'D10'), ('TATTAAGAGAAGTGCG', 'D10'), ('GACCCCTTGTAAGATG', 'D10'), ('CGAAACACGTCCCAGT', 'D10'), ('TTTATATCGAGATTCA', 'D10'), ('GAGGGGATACGTCACC', 'D10'), ('TAGCTGATAGTAACTC', 'D10'), ('CCGCGCACGTTTAGAG', 'D10'), ('TCGAGTTAATATGCGC', 'D10'), ('CGACTCCACGGACGCC', 'D10'), ('AACCACCCCAGAGATG', 'D10'), ('GAGCTTGCTATGGATC', 'D10'), ('AGATCCACCCTATAGT', 'D10'), ('CACGGCCGGCGAACTC', 'D10'), ('CACGGGCTAATGTCTC', 'D10'), ('CTTACTGCGCGAGAGT', 'D10'), ('CACCAATCTTCGAACT', 'D10'), ('AGTTTTTATAACTTGC', 'D10'), ('GCCGGCGTTAGTGTCA', 'D10'), ('GTGCATCCTAGTGACG', 'D10'), ('TTAATGTAGCCGCTCC', 'D10'), ('TACAAGAGAGGGGTCC', 'D10'), ('TAACGTGATTTCTCGA', 'E10'), ('TCGAGTTAATATGCGC', 'E10'), ('TATTAAGAGAAGTGCG', 'F10'), ('AACCACCCCAGAGATG', 'F10'), ('TGTCCGGATAAAGTAG', 'F10'), ('AGTCCTATCCTCAAAT', 'F10'), ('TCGAGTTAATATGCGC', 'F10'), ('CAGATAGTGATGAACA', 'H10'), ('AACCACCCCAGAGATG', 'H10'), ('CCTTTCTCAAAACATA', 'H10'), ('GCCGGCGTTAGTGTCA', 'H10'), ('AGTTTTTATAACTTGC', 'H10'), ('TCGAGTTAATATGCGC', 'H10'), ('AGTCCTATCCTCAAAT', 'D11'), ('CGTACGTATGTCCCAG', 'E11'), ('GCCGGCGTTAGTGTCA', 'E11'), ('TTAATGTAGCCGCTCC', 'E11'), ('AGATCCACCCTATAGT', 'F11'), ('CGAAACACGTCCCAGT', 'F11'), ('AGTCCTATCCTCAAAT', 'F11'), ('TCTCAGCTCTTAGCCG', 'H11')]
Check how many dilutions we have per barcode / serum-replicate:
n_dilutions = (
frac_infectivity.groupby(["serum_replicate", "strain", "barcode"], as_index=False)
.aggregate(**{"number of dilutions": pd.NamedAgg("dilution_factor", "nunique")})
.assign(
fails_qc=lambda x: (
x["number of dilutions"]
< qc_thresholds["min_dilutions_per_barcode_serum_replicate"]
),
)
)
n_dilutions_chart = (
alt.Chart(n_dilutions)
.add_params(barcode_selection)
.encode(
alt.X("number of dilutions", scale=alt.Scale(nice=False, padding=4)),
alt.Y("strain", title=None),
alt.Column(
"serum_replicate",
title=None,
header=alt.Header(labelFontSize=12, labelFontStyle="bold", labelPadding=0),
),
alt.Fill(
"fails_qc",
title=f"fails {qc_thresholds['min_dilutions_per_barcode_serum_replicate']=}",
legend=alt.Legend(titleLimit=500, orient="bottom"),
),
strokeWidth=alt.condition(barcode_selection, alt.value(2), alt.value(0)),
size=alt.condition(barcode_selection, alt.value(55), alt.value(35)),
tooltip=[
alt.Tooltip(c, format=".3g") if n_dilutions[c].dtype == float else c
for c in n_dilutions.columns
],
)
.mark_circle(stroke="black", strokeOpacity=1, fillOpacity=0.45)
.properties(
height=alt.Step(10),
width=120,
title=alt.TitleParams(
"number of dilutions for each barcode for each serum-replicate", dy=-2
),
)
)
display(n_dilutions_chart)
# drop barcode / serum-replicates failing QC
min_dilutions_per_barcode_serum_replicate_drops = list(
n_dilutions.query("fails_qc")[["barcode", "serum_replicate"]].itertuples(
index=False, name=None
)
)
print(
f"\nDropping {len(min_dilutions_per_barcode_serum_replicate_drops)} barcode/serum-replicates for failing "
f"{qc_thresholds['min_dilutions_per_barcode_serum_replicate']=}: "
+ str(min_dilutions_per_barcode_serum_replicate_drops)
)
qc_drops["barcode_serum_replicates"].update(
{
w: "min_dilutions_per_barcode_serum_replicate"
for w in min_dilutions_per_barcode_serum_replicate_drops
}
)
frac_infectivity = frac_infectivity[
~frac_infectivity.assign(
barcode_serum_replicate=lambda x: x.apply(
lambda r: (r["barcode"], r["serum_replicate"]), axis=1
)
)["barcode_serum_replicate"].isin(qc_drops["barcode_serum_replicates"])
]
Dropping 7 barcode/serum-replicates for failing qc_thresholds['min_dilutions_per_barcode_serum_replicate']=6: [('GACCCCTTGTAAGATG', 'EPIHK_28'), ('TATTAAGAGAAGTGCG', 'EPIHK_30'), ('AACCACCCCAGAGATG', 'EPIHK_30'), ('GCCGGCGTTAGTGTCA', 'EPIHK_30'), ('TAACGTGATTTCTCGA', 'EPIHK_30'), ('TCGAGTTAATATGCGC', 'EPIHK_30'), ('AGTTTTTATAACTTGC', 'EPIHK_30')]
Fit neutralization curves without applying QC to curves¶
First fit curves to all serum replicates, then we will apply QC on the curve fits. Note that the fitting is done to the fraction infectivities with the ceiling:
fits_noqc = neutcurve.CurveFits(
frac_infectivity.rename(
columns={
"frac_infectivity_ceiling": "fraction infectivity",
"concentration": "serum concentration",
}
),
conc_col="serum concentration",
fracinf_col="fraction infectivity",
virus_col="strain",
serum_col="serum_replicate",
replicate_col="barcode",
fixtop=curvefit_params["fixtop"],
fixbottom=curvefit_params["fixbottom"],
fixslope=curvefit_params["fixslope"],
)
Determine which fits fail the curve fitting QC, and plot them. Note the plot indicates as failing QC any barcode / serum-replicate that fails, even if we are also specified to ignore the QC for that one (so it will not be removed later):
goodness_of_fit = curvefit_qc["goodness_of_fit"]
fit_params_noqc = (
frac_infectivity.groupby(["serum_replicate", "barcode"], as_index=False)
.aggregate(max_frac_infectivity=pd.NamedAgg("frac_infectivity_ceiling", "max"))
.merge(
fits_noqc.fitParams(average_only=False, no_average=True)[
["serum", "virus", "replicate", "r2", "rmsd"]
].rename(columns={"serum": "serum_replicate", "replicate": "barcode"}),
validate="one_to_one",
)
.assign(
fails_max_frac_infectivity_at_least=lambda x: (
x["max_frac_infectivity"] < curvefit_qc["max_frac_infectivity_at_least"]
),
fails_goodness_of_fit=lambda x: (
(x["r2"] < goodness_of_fit["min_R2"])
& (x["rmsd"] > goodness_of_fit["max_RMSD"])
),
fails_qc=lambda x: (
x["fails_max_frac_infectivity_at_least"] | x["fails_goodness_of_fit"]
),
ignore_qc=lambda x: x.apply(
lambda r: (
(
r["serum_replicate"]
in curvefit_qc["serum_replicates_ignore_curvefit_qc"]
)
or (
(r["barcode"], r["serum_replicate"])
in curvefit_qc["barcode_serum_replicates_ignore_curvefit_qc"]
)
),
axis=1,
),
)
)
print(f"Plotting barcode / serum-replicates that fail {curvefit_qc=}\n")
fit_params_noqc_base_chart = alt.Chart(fit_params_noqc).add_params(barcode_selection)
fit_params_noqc_chart = []
for prop, col in [
("max frac infectivity", "max_frac_infectivity"),
("curve fit R2", "r2"),
("curve fit RMSD", "rmsd"),
]:
fit_params_noqc_chart.append(
fit_params_noqc_base_chart.encode(
alt.X(col, title=prop, scale=alt.Scale(nice=False, padding=4)),
alt.Y("virus", title=None),
alt.Fill("fails_qc"),
alt.Column(
"serum_replicate",
title=None,
header=alt.Header(
labelFontSize=12, labelFontStyle="bold", labelPadding=0
),
),
strokeWidth=alt.condition(barcode_selection, alt.value(2), alt.value(0)),
size=alt.condition(barcode_selection, alt.value(55), alt.value(35)),
tooltip=[
alt.Tooltip(c, format=".3g") if fit_params_noqc[c].dtype == float else c
for c in fit_params_noqc.columns
],
)
.mark_circle(stroke="black", strokeOpacity=1, fillOpacity=0.55)
.properties(
height=alt.Step(10),
width=90,
title=alt.TitleParams(f"{prop} for each barcode serum-replicate", dy=-2),
)
)
alt.vconcat(*fit_params_noqc_chart)
Plotting barcode / serum-replicates that fail curvefit_qc={'max_frac_infectivity_at_least': 0.0, 'goodness_of_fit': {'min_R2': 0.5, 'max_RMSD': 0.15}, 'serum_replicates_ignore_curvefit_qc': [], 'barcode_serum_replicates_ignore_curvefit_qc': []}
Now plot curves for all virus vs serum-replicates that have a barcode that fails any of the QC. In these plots, the suffix on the barcode name in the color key indicates if it passed or failed QC:
barcode_serum_replicates_fail_qc = fit_params_noqc.query("fails_qc").reset_index(
drop=True
)
print(f"Here are barcode / serum-replicates that fail {curvefit_qc=}")
display(barcode_serum_replicates_fail_qc)
if len(barcode_serum_replicates_fail_qc):
print(
"\nCurves for virus vs serum-replicates with at least one failed barcode."
"\nColor key labels indicate if barcodes failed or passed QC."
)
plots = {}
ncol = 6
for iplot, (serum, virus, failed_barcodes) in enumerate(
barcode_serum_replicates_fail_qc.groupby(
["serum_replicate", "virus"], as_index=False
)
.aggregate(barcodes=pd.NamedAgg("barcode", list))
.itertuples(index=False)
):
passed_barcodes = [
bc
for bc in fits_noqc.replicates[serum, virus]
if (bc not in failed_barcodes) and (bc != "average")
]
curvelist = []
assert len(CBMARKERS) >= len(failed_barcodes + passed_barcodes)
assert len(CBPALETTE) >= len(failed_barcodes + passed_barcodes)
for replicate, marker, color in zip(
failed_barcodes + passed_barcodes, CBMARKERS, CBPALETTE
):
curvelist.append(
{
"serum": serum,
"virus": virus,
"replicate": replicate,
"label": replicate
+ ("-fail" if replicate in failed_barcodes else "-pass"),
"color": color,
"marker": marker,
}
)
plots[iplot // ncol, iplot % ncol] = (f"{serum} vs {virus}", curvelist)
fig, _ = fits_noqc.plotGrid(
plots,
attempt_shared_legend=False,
legendfontsize=8,
titlesize=9,
ticksize=10,
draw_in_bounds=True,
)
display_curve_fig(fig, curve_display_method)
plt.close(fig)
Here are barcode / serum-replicates that fail curvefit_qc={'max_frac_infectivity_at_least': 0.0, 'goodness_of_fit': {'min_R2': 0.5, 'max_RMSD': 0.15}, 'serum_replicates_ignore_curvefit_qc': [], 'barcode_serum_replicates_ignore_curvefit_qc': []}
serum_replicate | barcode | max_frac_infectivity | virus | r2 | rmsd | fails_max_frac_infectivity_at_least | fails_goodness_of_fit | fails_qc | ignore_qc | |
---|---|---|---|---|---|---|---|---|---|---|
0 | EPIHK_21 | ATTAGATTATAACGTA | 1.000000 | A/Cambodia/e0826360/2020_H3N2 | 0.391997 | 0.255988 | False | True | True | False |
1 | EPIHK_22 | CACCAATCTTCGAACT | 1.000000 | A/Santiago/101713/2024_H1N1 | 0.406019 | 0.329441 | False | True | True | False |
2 | EPIHK_22 | GCCTTTGCGCGCAGTC | 1.000000 | A/Badajoz/18680568/2025_H3N2 | 0.411758 | 0.245029 | False | True | True | False |
3 | EPIHK_23 | TATTCCTAACTAGCGA | 1.000000 | A/Sao_Paulo/358026766-IAL/2024_H3N2 | 0.421019 | 0.258296 | False | True | True | False |
4 | EPIHK_24 | AACCACCCCAGAGATG | 1.000000 | A/Kansas/14/2017_H3N2 | 0.487544 | 0.221085 | False | True | True | False |
5 | EPIHK_24 | AGACCATCGCACCCAA | 1.000000 | A/Thailand/8/2022_H3N2 | 0.090634 | 0.229401 | False | True | True | False |
6 | EPIHK_24 | CCGCATTAGCGGGAGG | 1.000000 | A/Maldives/2186/2024_H3N2 | 0.477631 | 0.194010 | False | True | True | False |
7 | EPIHK_24 | CGTACGTATGTCCCAG | 1.000000 | A/Thailand/8/2022_H3N2 | 0.339967 | 0.158303 | False | True | True | False |
8 | EPIHK_25 | AAAGTAGCAGAGGATT | 1.000000 | A/Darwin/9/2021_H3N2 | 0.427708 | 0.212994 | False | True | True | False |
9 | EPIHK_25 | CGTTCAGCGATAACGG | 1.000000 | A/Texas/ISC-1322/2025_H3N2 | 0.367346 | 0.212619 | False | True | True | False |
10 | EPIHK_25 | TATCCAAGGGACGGAC | 0.959487 | A/HongKong/45/2019_H3N2 | 0.230388 | 0.195379 | False | True | True | False |
11 | EPIHK_30 | AGACCATCGCACCCAA | 1.000000 | A/Thailand/8/2022_H3N2 | 0.460224 | 0.190681 | False | True | True | False |
12 | EPIHK_30 | CAAAATCTACGGCGAC | 1.000000 | A/France/BRE-IPP01880/2025_H3N2 | 0.498215 | 0.182009 | False | True | True | False |
13 | EPIHK_31 | AGACCATCGCACCCAA | 1.000000 | A/Thailand/8/2022_H3N2 | 0.328650 | 0.187406 | False | True | True | False |
14 | EPIHK_31 | CCTTTCTCAAAACATA | 1.000000 | A/California/07/2009_H1N1 | 0.443221 | 0.269941 | False | True | True | False |
15 | EPIHK_31 | CGTTAACGGCCTATCC | 1.000000 | A/Darwin/9/2021_H3N2 | 0.075512 | 0.181724 | False | True | True | False |
Curves for virus vs serum-replicates with at least one failed barcode. Color key labels indicate if barcodes failed or passed QC.
# drop barcode / serum-replicates failing QC
for qc_filter in ["max_frac_infectivity_at_least", "goodness_of_fit"]:
fits_qc_drops = list(
fit_params_noqc.query(f"fails_{qc_filter} and (not ignore_qc)")[
["barcode", "serum_replicate"]
].itertuples(index=False, name=None)
)
print(
f"\nDropping {len(fits_qc_drops)} barcode/serum-replicates for failing "
f"{qc_filter}={curvefit_qc[qc_filter]}: " + str(fits_qc_drops)
)
qc_drops["barcode_serum_replicates"].update({w: qc_filter for w in fits_qc_drops})
frac_infectivity = frac_infectivity[
~frac_infectivity.assign(
barcode_serum_replicate=lambda x: x.apply(
lambda r: (r["barcode"], r["serum_replicate"]), axis=1
)
)["barcode_serum_replicate"].isin(qc_drops["barcode_serum_replicates"])
]
fit_params_noqc = fit_params_noqc[
~fit_params_noqc.assign(
barcode_serum_replicate=lambda x: x.apply(
lambda r: (r["barcode"], r["serum_replicate"]), axis=1
)
)["barcode_serum_replicate"].isin(qc_drops["barcode_serum_replicates"])
]
Dropping 0 barcode/serum-replicates for failing max_frac_infectivity_at_least=0.0: [] Dropping 16 barcode/serum-replicates for failing goodness_of_fit={'min_R2': 0.5, 'max_RMSD': 0.15}: [('ATTAGATTATAACGTA', 'EPIHK_21'), ('CACCAATCTTCGAACT', 'EPIHK_22'), ('GCCTTTGCGCGCAGTC', 'EPIHK_22'), ('TATTCCTAACTAGCGA', 'EPIHK_23'), ('AACCACCCCAGAGATG', 'EPIHK_24'), ('AGACCATCGCACCCAA', 'EPIHK_24'), ('CCGCATTAGCGGGAGG', 'EPIHK_24'), ('CGTACGTATGTCCCAG', 'EPIHK_24'), ('AAAGTAGCAGAGGATT', 'EPIHK_25'), ('CGTTCAGCGATAACGG', 'EPIHK_25'), ('TATCCAAGGGACGGAC', 'EPIHK_25'), ('AGACCATCGCACCCAA', 'EPIHK_30'), ('CAAAATCTACGGCGAC', 'EPIHK_30'), ('AGACCATCGCACCCAA', 'EPIHK_31'), ('CCTTTCTCAAAACATA', 'EPIHK_31'), ('CGTTAACGGCCTATCC', 'EPIHK_31')]
Fit neutralization curves after applying QC¶
No we re-fit curves after applying all the QC:
fits_qc = neutcurve.CurveFits(
frac_infectivity.rename(
columns={
"frac_infectivity_ceiling": "fraction infectivity",
"concentration": "serum concentration",
}
),
conc_col="serum concentration",
fracinf_col="fraction infectivity",
virus_col="strain",
serum_col="serum",
replicate_col="plate_barcode",
fixtop=curvefit_params["fixtop"],
fixbottom=curvefit_params["fixbottom"],
fixslope=curvefit_params["fixslope"],
)
fit_params_qc = fits_qc.fitParams(average_only=False, no_average=True)
assert len(fit_params_qc) <= len(
fits_noqc.fitParams(average_only=False, no_average=True)
)
print(f"Assigning fits for this plate to {group}")
fit_params_qc.insert(0, "group", group)
Assigning fits for this plate to EPIHK
Plot all the curves that passed QC:
if fits_qc.sera:
fig, _ = fits_qc.plotReplicates(
attempt_shared_legend=False,
legendfontsize=8,
titlesize=9,
ticksize=10,
ncol=6,
draw_in_bounds=True,
)
display_curve_fig(fig, curve_display_method)
plt.close(fig)
else:
print("No sera passed QC.")
Save results to files¶
print(f"Writing fraction infectivities to {frac_infectivity_csv}")
(
frac_infectivity[
[
"serum",
"strain",
"plate_barcode",
"dilution_factor",
"frac_infectivity_raw",
"frac_infectivity_ceiling",
]
]
.sort_values(["serum", "plate_barcode", "dilution_factor"])
.to_csv(frac_infectivity_csv, index=False, float_format="%.4g")
)
print(f"\nWriting fit parameters to {fits_csv}")
(
fit_params_qc.drop(columns=["nreplicates", "ic50_str"]).to_csv(
fits_csv, index=False, float_format="%.4g"
)
)
print(f"\nPickling neutcurve.CurveFits object for these data to {fits_pickle}")
with open(fits_pickle, "wb") as f:
pickle.dump(fits_qc, f)
print(f"\nWriting QC drops to {qc_drops_yaml}")
def tup_to_str(x):
return " ".join(x) if isinstance(x, tuple) else x
qc_drops_for_yaml = {
key: {tup_to_str(key2): val2 for key2, val2 in val.items()}
for key, val in qc_drops.items()
}
with open(qc_drops_yaml, "w") as f:
yaml.YAML(typ="rt").dump(qc_drops_for_yaml, f)
print("\nHere are the QC drops:\n***************************")
yaml.YAML(typ="rt").dump(qc_drops_for_yaml, sys.stdout)
Writing fraction infectivities to results/plates/plate14/frac_infectivity.csv Writing fit parameters to results/plates/plate14/curvefits.csv Pickling neutcurve.CurveFits object for these data to results/plates/plate14/curvefits.pickle
Writing QC drops to results/plates/plate14/qc_drops.yml Here are the QC drops: *************************** wells: C10: avg_barcode_counts_per_well C12: avg_barcode_counts_per_well barcodes: CTCTTACGCTCCTACG: min_neut_standard_frac_per_well barcode_wells: GATTCAGATGCCCACC A12: min_no_serum_count_per_viral_barcode_well CCTTTCTCAAAACATA D12: min_no_serum_count_per_viral_barcode_well AGTCCTATCCTCAAAT D12: min_no_serum_count_per_viral_barcode_well GATTCAGATGCCCACC H12: min_no_serum_count_per_viral_barcode_well AGTCCTATCCTCAAAT F1: max_frac_infectivity_per_viral_barcode_well ACAAAGTCTCGAGAAG G1: max_frac_infectivity_per_viral_barcode_well GAGGGGATACGTCACC H1: max_frac_infectivity_per_viral_barcode_well AGTTTTTATAACTTGC H1: max_frac_infectivity_per_viral_barcode_well CCCCTCCTCTAAAGTT G2: max_frac_infectivity_per_viral_barcode_well TCTCAGCTCTTAGCCG G2: max_frac_infectivity_per_viral_barcode_well TAGCTGATAGTAACTC H2: max_frac_infectivity_per_viral_barcode_well AATGCGAGCATGTCAA H2: max_frac_infectivity_per_viral_barcode_well GACCCCTTGTAAGATG H2: max_frac_infectivity_per_viral_barcode_well AGTCCTATCCTCAAAT H2: max_frac_infectivity_per_viral_barcode_well GATCGCCACTGATAAG D3: max_frac_infectivity_per_viral_barcode_well TGTTGAGCCAGTCTGA H3: max_frac_infectivity_per_viral_barcode_well AACACGTAGAACCGCC H3: max_frac_infectivity_per_viral_barcode_well GACCCCTTGTAAGATG H3: max_frac_infectivity_per_viral_barcode_well TCGAGTTAATATGCGC H3: max_frac_infectivity_per_viral_barcode_well TTAATGTAGCCGCTCC H3: max_frac_infectivity_per_viral_barcode_well AGACCATCGCACCCAA C4: max_frac_infectivity_per_viral_barcode_well CACCAATCTTCGAACT D4: max_frac_infectivity_per_viral_barcode_well ATAGAATCGCAAATTA F4: max_frac_infectivity_per_viral_barcode_well GATCACGCAGAAAAAG F4: max_frac_infectivity_per_viral_barcode_well ATCAGGATAATCGCGC F4: max_frac_infectivity_per_viral_barcode_well GACCCCTTGTAAGATG G4: max_frac_infectivity_per_viral_barcode_well AACCACCCCAGAGATG H4: max_frac_infectivity_per_viral_barcode_well CAATTCGCCGTTCCCC C5: max_frac_infectivity_per_viral_barcode_well ATAGAAAATTATCCGC F5: max_frac_infectivity_per_viral_barcode_well CACGGCCGGCGAACTC F5: max_frac_infectivity_per_viral_barcode_well CGATCTTTACGAAAAA G5: max_frac_infectivity_per_viral_barcode_well CACGGGCTAATGTCTC H5: max_frac_infectivity_per_viral_barcode_well GACCCCTTGTAAGATG H5: max_frac_infectivity_per_viral_barcode_well GACCCCTTGTAAGATG C6: max_frac_infectivity_per_viral_barcode_well CCTTTCTCAAAACATA D6: max_frac_infectivity_per_viral_barcode_well ACGTCCATTAAGATCA E6: max_frac_infectivity_per_viral_barcode_well AGGTTCAGACTCTTGC F6: max_frac_infectivity_per_viral_barcode_well GATCACGCAGAAAAAG F6: max_frac_infectivity_per_viral_barcode_well GCGAAGTTTCATAGCG F6: max_frac_infectivity_per_viral_barcode_well TAGCTGATAGTAACTC F6: max_frac_infectivity_per_viral_barcode_well CCTTTCTCAAAACATA F6: max_frac_infectivity_per_viral_barcode_well GATTCAGATGCCCACC F6: max_frac_infectivity_per_viral_barcode_well CACCAATCTTCGAACT G6: max_frac_infectivity_per_viral_barcode_well CAGAACCTCGTTGTCT H6: max_frac_infectivity_per_viral_barcode_well CATGGGAATTGCCACT H6: max_frac_infectivity_per_viral_barcode_well AATGAAACAATCGAAC H6: max_frac_infectivity_per_viral_barcode_well TTTCAGCGTTGTTTTG H6: max_frac_infectivity_per_viral_barcode_well ACAAGATTCGGGGGAC H6: max_frac_infectivity_per_viral_barcode_well CGTTCAGCGATAACGG H6: max_frac_infectivity_per_viral_barcode_well GTTATTATGACTTCAT H6: max_frac_infectivity_per_viral_barcode_well CTATCTTAATCTACAG H6: max_frac_infectivity_per_viral_barcode_well GAAGAAACTATAACCA H6: max_frac_infectivity_per_viral_barcode_well TGACAACAATACAAAT H6: max_frac_infectivity_per_viral_barcode_well GTAGAACTGCGGCCCC H6: max_frac_infectivity_per_viral_barcode_well AGGAAAGAAACTGGAG H6: max_frac_infectivity_per_viral_barcode_well AGTATTTGCGCTTCAA H6: max_frac_infectivity_per_viral_barcode_well GCAACGAGGTGTAACC H6: max_frac_infectivity_per_viral_barcode_well TTTCACAGAACCTATC H6: max_frac_infectivity_per_viral_barcode_well AAAGCTCTTTTCGTTC H6: max_frac_infectivity_per_viral_barcode_well ATGGGATTGGAGAAAC H6: max_frac_infectivity_per_viral_barcode_well TTGACTCACCGAATAA H6: max_frac_infectivity_per_viral_barcode_well GCATGGAACTAACTCC H6: max_frac_infectivity_per_viral_barcode_well ATGGCCCACGGGCATA H6: max_frac_infectivity_per_viral_barcode_well AAGTTAAGAGAAAGTT H6: max_frac_infectivity_per_viral_barcode_well TATCCAAGGGACGGAC H6: max_frac_infectivity_per_viral_barcode_well ACTCTGGCTCGCTAAT H6: max_frac_infectivity_per_viral_barcode_well CGCAGCATTGGTCGCC H6: max_frac_infectivity_per_viral_barcode_well TAACGTGATTTCTCGA H6: max_frac_infectivity_per_viral_barcode_well GTGCGATTGTCCGGAA H6: max_frac_infectivity_per_viral_barcode_well ACAAAGTCTCGAGAAG H6: max_frac_infectivity_per_viral_barcode_well AAATTCACAATATCCA H6: max_frac_infectivity_per_viral_barcode_well CGTTTTTGGTTCGAGG H6: max_frac_infectivity_per_viral_barcode_well GTAAGCTTCATGGAGT H6: max_frac_infectivity_per_viral_barcode_well GTACCCAGTTCCTGCG H6: max_frac_infectivity_per_viral_barcode_well TCTTAGTCCTCGTATG H6: max_frac_infectivity_per_viral_barcode_well CGTACGTATGTCCCAG H6: max_frac_infectivity_per_viral_barcode_well TCTTGACATAGCGATG H6: max_frac_infectivity_per_viral_barcode_well AGATCCACCCTATAGT H6: max_frac_infectivity_per_viral_barcode_well AGGTTCAGACTCTTGC H6: max_frac_infectivity_per_viral_barcode_well GTGGTATCAAGCCGGG H6: max_frac_infectivity_per_viral_barcode_well TGCAGTGGTATACATA H6: max_frac_infectivity_per_viral_barcode_well AGTAAACATGCATTGG H6: max_frac_infectivity_per_viral_barcode_well AACTTCCGTCGCCTGA H6: max_frac_infectivity_per_viral_barcode_well TTGAAAAAATCATAAA H6: max_frac_infectivity_per_viral_barcode_well CCGGATAAATCAGAAC H6: max_frac_infectivity_per_viral_barcode_well AGATCCCAGGTCCTTT H6: max_frac_infectivity_per_viral_barcode_well GAAAGTCCCTATGATG H6: max_frac_infectivity_per_viral_barcode_well AGCTCCTGGGGTATCA H6: max_frac_infectivity_per_viral_barcode_well ACACGGGTTGGCTGTA H6: max_frac_infectivity_per_viral_barcode_well ATTTAAATTCGAGGAC H6: max_frac_infectivity_per_viral_barcode_well AGACCGCCAGTTTCGT H6: max_frac_infectivity_per_viral_barcode_well TCGAACGAAGTAGGAG H6: max_frac_infectivity_per_viral_barcode_well TCTTTACCACTGCATC H6: max_frac_infectivity_per_viral_barcode_well AATTCGTGAGTACTAG H6: max_frac_infectivity_per_viral_barcode_well CCAAGCTTGGCGCATC H6: max_frac_infectivity_per_viral_barcode_well AGAGCTAAAAAGAGGA H6: max_frac_infectivity_per_viral_barcode_well TGCGGTGGTCGATCCG H6: max_frac_infectivity_per_viral_barcode_well ACAGTCCACCATTGAG H6: max_frac_infectivity_per_viral_barcode_well GATCACGCAGAAAAAG H6: max_frac_infectivity_per_viral_barcode_well TGTCCGGATAAAGTAG H6: max_frac_infectivity_per_viral_barcode_well TTGGGCACTAAATTAA H6: max_frac_infectivity_per_viral_barcode_well GACAAAAGGGACATAT H6: max_frac_infectivity_per_viral_barcode_well CTGGAGGCCTGGCCCC H6: max_frac_infectivity_per_viral_barcode_well TCTAACTCTCGCGGCA H6: max_frac_infectivity_per_viral_barcode_well ATACACGAGGTTGTGA H6: max_frac_infectivity_per_viral_barcode_well ATCAGGATAATCGCGC H6: max_frac_infectivity_per_viral_barcode_well TGTTGAGCCAGTCTGA H6: max_frac_infectivity_per_viral_barcode_well TGCTATTCCGGCGCGG H6: max_frac_infectivity_per_viral_barcode_well AGGACTATAGTTGGCA H6: max_frac_infectivity_per_viral_barcode_well ACGTCCATTAAGATCA H6: max_frac_infectivity_per_viral_barcode_well TATTAAGAGAAGTGCG H6: max_frac_infectivity_per_viral_barcode_well ATAACTGAGGGCATTG H6: max_frac_infectivity_per_viral_barcode_well GAGGGGATACGTCACC H6: max_frac_infectivity_per_viral_barcode_well GCGAAGTTTCATAGCG H6: max_frac_infectivity_per_viral_barcode_well TAGCTGATAGTAACTC H6: max_frac_infectivity_per_viral_barcode_well TATATTAGTAACATAA H6: max_frac_infectivity_per_viral_barcode_well TTTATATCGAGATTCA H6: max_frac_infectivity_per_viral_barcode_well TCGCTTCAACTAAAAA H6: max_frac_infectivity_per_viral_barcode_well AAGGTCCCTATGTAAT H6: max_frac_infectivity_per_viral_barcode_well CTCAAATAATTGGCGC H6: max_frac_infectivity_per_viral_barcode_well ACAGTACGATCTACGC H6: max_frac_infectivity_per_viral_barcode_well CACGGCCGGCGAACTC H6: max_frac_infectivity_per_viral_barcode_well AAAGTAGCAGAGGATT H6: max_frac_infectivity_per_viral_barcode_well AATGCGAGCATGTCAA H6: max_frac_infectivity_per_viral_barcode_well CACGGGCTAATGTCTC H6: max_frac_infectivity_per_viral_barcode_well CGACTCCACGGACGCC H6: max_frac_infectivity_per_viral_barcode_well GCCGCTGCGGCGTGTG H6: max_frac_infectivity_per_viral_barcode_well CGAAACACGTCCCAGT H6: max_frac_infectivity_per_viral_barcode_well CCGCGCACGTTTAGAG H6: max_frac_infectivity_per_viral_barcode_well AGTTTTTATAACTTGC H6: max_frac_infectivity_per_viral_barcode_well ATCCGATTTAAAGGCA H6: max_frac_infectivity_per_viral_barcode_well ATGGTTTTACGTCCAT H6: max_frac_infectivity_per_viral_barcode_well GAAATCCCCAAATAAC H6: max_frac_infectivity_per_viral_barcode_well GACCCCTTGTAAGATG H6: max_frac_infectivity_per_viral_barcode_well TTAATGTAGCCGCTCC H6: max_frac_infectivity_per_viral_barcode_well AGTCCTATCCTCAAAT H6: max_frac_infectivity_per_viral_barcode_well TCGAGTTAATATGCGC H6: max_frac_infectivity_per_viral_barcode_well TACAAGAGAGGGGTCC H6: max_frac_infectivity_per_viral_barcode_well GATTCAGATGCCCACC H6: max_frac_infectivity_per_viral_barcode_well GAAATCCCCAAATAAC D7: max_frac_infectivity_per_viral_barcode_well ACAGTCCACCATTGAG F7: max_frac_infectivity_per_viral_barcode_well CGAAACACGTCCCAGT F7: max_frac_infectivity_per_viral_barcode_well TCGAGTTAATATGCGC F7: max_frac_infectivity_per_viral_barcode_well AGTTTTTATAACTTGC G7: max_frac_infectivity_per_viral_barcode_well GACAAAAGGGACATAT H7: max_frac_infectivity_per_viral_barcode_well GAGGGGATACGTCACC H7: max_frac_infectivity_per_viral_barcode_well TGTCCGGATAAAGTAG H7: max_frac_infectivity_per_viral_barcode_well GAGCTTGCTATGGATC H7: max_frac_infectivity_per_viral_barcode_well ATGGTTTTACGTCCAT H7: max_frac_infectivity_per_viral_barcode_well GACCCCTTGTAAGATG H7: max_frac_infectivity_per_viral_barcode_well AACCACCCCAGAGATG D8: max_frac_infectivity_per_viral_barcode_well ATGGTTTTACGTCCAT D8: max_frac_infectivity_per_viral_barcode_well CACGGGCTAATGTCTC D8: max_frac_infectivity_per_viral_barcode_well GACCCCTTGTAAGATG D8: max_frac_infectivity_per_viral_barcode_well AGTTTTTATAACTTGC D8: max_frac_infectivity_per_viral_barcode_well GACCCCTTGTAAGATG E8: max_frac_infectivity_per_viral_barcode_well TCTAACTCTCGCGGCA F8: max_frac_infectivity_per_viral_barcode_well GACCCCTTGTAAGATG F8: max_frac_infectivity_per_viral_barcode_well TCGAGTTAATATGCGC F8: max_frac_infectivity_per_viral_barcode_well GATTCAGATGCCCACC F8: max_frac_infectivity_per_viral_barcode_well TACATACCGACGCAGT H8: max_frac_infectivity_per_viral_barcode_well ACAAAGTCTCGAGAAG H8: max_frac_infectivity_per_viral_barcode_well AAAGTAGCAGAGGATT H8: max_frac_infectivity_per_viral_barcode_well CCTTTCTCAAAACATA H8: max_frac_infectivity_per_viral_barcode_well TCGAGTTAATATGCGC C9: max_frac_infectivity_per_viral_barcode_well AGTTTTTATAACTTGC E9: max_frac_infectivity_per_viral_barcode_well ATCAGGATAATCGCGC E9: max_frac_infectivity_per_viral_barcode_well CACCAATCTTCGAACT E9: max_frac_infectivity_per_viral_barcode_well GATTCAGATGCCCACC E9: max_frac_infectivity_per_viral_barcode_well AATTCGTGAGTACTAG F9: max_frac_infectivity_per_viral_barcode_well TTAATGTAGCCGCTCC F9: max_frac_infectivity_per_viral_barcode_well GATTCAGATGCCCACC F9: max_frac_infectivity_per_viral_barcode_well TGGAATCGTCACCGAT G9: max_frac_infectivity_per_viral_barcode_well GCGAAGTTTCATAGCG H9: max_frac_infectivity_per_viral_barcode_well TGTCCGGATAAAGTAG H9: max_frac_infectivity_per_viral_barcode_well GACCCCTTGTAAGATG H9: max_frac_infectivity_per_viral_barcode_well AGTTTTTATAACTTGC H9: max_frac_infectivity_per_viral_barcode_well TTAATGTAGCCGCTCC H9: max_frac_infectivity_per_viral_barcode_well CTATCTTAATCTACAG D10: max_frac_infectivity_per_viral_barcode_well AAGTATTGCTACACAT D10: max_frac_infectivity_per_viral_barcode_well GTAGAACTGCGGCCCC D10: max_frac_infectivity_per_viral_barcode_well ACTCTGGCTCGCTAAT D10: max_frac_infectivity_per_viral_barcode_well GCATGGAACTAACTCC D10: max_frac_infectivity_per_viral_barcode_well TAACGTGATTTCTCGA D10: max_frac_infectivity_per_viral_barcode_well TGCTATTCCGGCGCGG D10: max_frac_infectivity_per_viral_barcode_well ATTTAAATTCGAGGAC D10: max_frac_infectivity_per_viral_barcode_well ACAGTCCACCATTGAG D10: max_frac_infectivity_per_viral_barcode_well CAAAAGCAGCACGATA D10: max_frac_infectivity_per_viral_barcode_well TGCAGTGGTATACATA D10: max_frac_infectivity_per_viral_barcode_well ACCGATTCACGAATAA D10: max_frac_infectivity_per_viral_barcode_well TCTTTACCACTGCATC D10: max_frac_infectivity_per_viral_barcode_well ATCAGGATAATCGCGC D10: max_frac_infectivity_per_viral_barcode_well ACCCCCGGAGCTTGGC D10: max_frac_infectivity_per_viral_barcode_well GCGAAGTTTCATAGCG D10: max_frac_infectivity_per_viral_barcode_well TATTAAGAGAAGTGCG D10: max_frac_infectivity_per_viral_barcode_well GACCCCTTGTAAGATG D10: max_frac_infectivity_per_viral_barcode_well CGAAACACGTCCCAGT D10: max_frac_infectivity_per_viral_barcode_well TTTATATCGAGATTCA D10: max_frac_infectivity_per_viral_barcode_well GAGGGGATACGTCACC D10: max_frac_infectivity_per_viral_barcode_well TAGCTGATAGTAACTC D10: max_frac_infectivity_per_viral_barcode_well CCGCGCACGTTTAGAG D10: max_frac_infectivity_per_viral_barcode_well TCGAGTTAATATGCGC D10: max_frac_infectivity_per_viral_barcode_well CGACTCCACGGACGCC D10: max_frac_infectivity_per_viral_barcode_well AACCACCCCAGAGATG D10: max_frac_infectivity_per_viral_barcode_well GAGCTTGCTATGGATC D10: max_frac_infectivity_per_viral_barcode_well AGATCCACCCTATAGT D10: max_frac_infectivity_per_viral_barcode_well CACGGCCGGCGAACTC D10: max_frac_infectivity_per_viral_barcode_well CACGGGCTAATGTCTC D10: max_frac_infectivity_per_viral_barcode_well CTTACTGCGCGAGAGT D10: max_frac_infectivity_per_viral_barcode_well CACCAATCTTCGAACT D10: max_frac_infectivity_per_viral_barcode_well AGTTTTTATAACTTGC D10: max_frac_infectivity_per_viral_barcode_well GCCGGCGTTAGTGTCA D10: max_frac_infectivity_per_viral_barcode_well GTGCATCCTAGTGACG D10: max_frac_infectivity_per_viral_barcode_well TTAATGTAGCCGCTCC D10: max_frac_infectivity_per_viral_barcode_well TACAAGAGAGGGGTCC D10: max_frac_infectivity_per_viral_barcode_well TAACGTGATTTCTCGA E10: max_frac_infectivity_per_viral_barcode_well TCGAGTTAATATGCGC E10: max_frac_infectivity_per_viral_barcode_well TATTAAGAGAAGTGCG F10: max_frac_infectivity_per_viral_barcode_well AACCACCCCAGAGATG F10: max_frac_infectivity_per_viral_barcode_well TGTCCGGATAAAGTAG F10: max_frac_infectivity_per_viral_barcode_well AGTCCTATCCTCAAAT F10: max_frac_infectivity_per_viral_barcode_well TCGAGTTAATATGCGC F10: max_frac_infectivity_per_viral_barcode_well CAGATAGTGATGAACA H10: max_frac_infectivity_per_viral_barcode_well AACCACCCCAGAGATG H10: max_frac_infectivity_per_viral_barcode_well CCTTTCTCAAAACATA H10: max_frac_infectivity_per_viral_barcode_well GCCGGCGTTAGTGTCA H10: max_frac_infectivity_per_viral_barcode_well AGTTTTTATAACTTGC H10: max_frac_infectivity_per_viral_barcode_well TCGAGTTAATATGCGC H10: max_frac_infectivity_per_viral_barcode_well AGTCCTATCCTCAAAT D11: max_frac_infectivity_per_viral_barcode_well CGTACGTATGTCCCAG E11: max_frac_infectivity_per_viral_barcode_well GCCGGCGTTAGTGTCA E11: max_frac_infectivity_per_viral_barcode_well TTAATGTAGCCGCTCC E11: max_frac_infectivity_per_viral_barcode_well AGATCCACCCTATAGT F11: max_frac_infectivity_per_viral_barcode_well CGAAACACGTCCCAGT F11: max_frac_infectivity_per_viral_barcode_well AGTCCTATCCTCAAAT F11: max_frac_infectivity_per_viral_barcode_well TCTCAGCTCTTAGCCG H11: max_frac_infectivity_per_viral_barcode_well barcode_serum_replicates: GACCCCTTGTAAGATG EPIHK_28: min_dilutions_per_barcode_serum_replicate TATTAAGAGAAGTGCG EPIHK_30: min_dilutions_per_barcode_serum_replicate AACCACCCCAGAGATG EPIHK_30: min_dilutions_per_barcode_serum_replicate GCCGGCGTTAGTGTCA EPIHK_30: min_dilutions_per_barcode_serum_replicate TAACGTGATTTCTCGA EPIHK_30: min_dilutions_per_barcode_serum_replicate TCGAGTTAATATGCGC EPIHK_30: min_dilutions_per_barcode_serum_replicate AGTTTTTATAACTTGC EPIHK_30: min_dilutions_per_barcode_serum_replicate ATTAGATTATAACGTA EPIHK_21: goodness_of_fit CACCAATCTTCGAACT EPIHK_22: goodness_of_fit GCCTTTGCGCGCAGTC EPIHK_22: goodness_of_fit TATTCCTAACTAGCGA EPIHK_23: goodness_of_fit AACCACCCCAGAGATG EPIHK_24: goodness_of_fit AGACCATCGCACCCAA EPIHK_24: goodness_of_fit CCGCATTAGCGGGAGG EPIHK_24: goodness_of_fit CGTACGTATGTCCCAG EPIHK_24: goodness_of_fit AAAGTAGCAGAGGATT EPIHK_25: goodness_of_fit CGTTCAGCGATAACGG EPIHK_25: goodness_of_fit TATCCAAGGGACGGAC EPIHK_25: goodness_of_fit AGACCATCGCACCCAA EPIHK_30: goodness_of_fit CAAAATCTACGGCGAC EPIHK_30: goodness_of_fit AGACCATCGCACCCAA EPIHK_31: goodness_of_fit CCTTTCTCAAAACATA EPIHK_31: goodness_of_fit CGTTAACGGCCTATCC EPIHK_31: goodness_of_fit serum_replicates: {}