######## snakemake preamble start (automatically inserted, do not edit) ########
import sys; sys.path.extend(['/home/aloes/miniconda3/envs/seqneut-pipeline/lib/python3.12/site-packages', '/fh/fast/bloom_j/computational_notebooks/aloes/2024/flu_seqneut_DRIVE_2021-22_repeat_vax/seqneut-pipeline', '/fh/fast/bloom_j/computational_notebooks/aloes/2024/flu_seqneut_DRIVE_2021-22_repeat_vax', '/home/aloes/miniconda3/envs/seqneut-pipeline/bin', '/home/aloes/miniconda3/envs/seqneut-pipeline/lib/python3.12', '/home/aloes/miniconda3/envs/seqneut-pipeline/lib/python3.12/lib-dynload', '/home/aloes/miniconda3/envs/seqneut-pipeline/lib/python3.12/site-packages', '/home/aloes/.cache/snakemake/snakemake/source-cache/runtime-cache/tmpzg9btu6h/file/fh/fast/bloom_j/computational_notebooks/aloes/2024/flu_seqneut_DRIVE_2021-22_repeat_vax/seqneut-pipeline/notebooks', '/fh/fast/bloom_j/computational_notebooks/aloes/2024/flu_seqneut_DRIVE_2021-22_repeat_vax/seqneut-pipeline/notebooks']); import pickle; snakemake = pickle.loads(b'\x80\x04\x95\xb9\xc6\x00\x00\x00\x00\x00\x00\x8c\x10snakemake.script\x94\x8c\tSnakemake\x94\x93\x94)\x81\x94}\x94(\x8c\x05input\x94\x8c\x0csnakemake.io\x94\x8c\nInputFiles\x94\x93\x94)\x81\x94(\x8c(results/barcode_counts/plate9_none-1.csv\x94\x8c/results/barcode_counts/plate9_D10417d182_20.csv\x94\x8c/results/barcode_counts/plate9_D10417d182_60.csv\x94\x8c0results/barcode_counts/plate9_D10417d182_180.csv\x94\x8c0results/barcode_counts/plate9_D10417d182_540.csv\x94\x8c1results/barcode_counts/plate9_D10417d182_1620.csv\x94\x8c1results/barcode_counts/plate9_D10417d182_4860.csv\x94\x8c2results/barcode_counts/plate9_D10417d182_14580.csv\x94\x8c2results/barcode_counts/plate9_D10417d182_43740.csv\x94\x8c3results/barcode_counts/plate9_D10417d182_131220.csv\x94\x8c3results/barcode_counts/plate9_D10417d182_393660.csv\x94\x8c)results/barcode_counts/plate9_none-16.csv\x94\x8c(results/barcode_counts/plate9_none-9.csv\x94\x8c.results/barcode_counts/plate9_D10417d30_20.csv\x94\x8c.results/barcode_counts/plate9_D10417d30_60.csv\x94\x8c/results/barcode_counts/plate9_D10417d30_180.csv\x94\x8c/results/barcode_counts/plate9_D10417d30_540.csv\x94\x8c0results/barcode_counts/plate9_D10417d30_1620.csv\x94\x8c0results/barcode_counts/plate9_D10417d30_4860.csv\x94\x8c1results/barcode_counts/plate9_D10417d30_14580.csv\x94\x8c1results/barcode_counts/plate9_D10417d30_43740.csv\x94\x8c2results/barcode_counts/plate9_D10417d30_131220.csv\x94\x8c2results/barcode_counts/plate9_D10417d30_393660.csv\x94\x8c(results/barcode_counts/plate9_none-2.csv\x94\x8c)results/barcode_counts/plate9_none-10.csv\x94\x8c-results/barcode_counts/plate9_D10417d0_20.csv\x94\x8c-results/barcode_counts/plate9_D10417d0_60.csv\x94\x8c.results/barcode_counts/plate9_D10417d0_180.csv\x94\x8c.results/barcode_counts/plate9_D10417d0_540.csv\x94\x8c/results/barcode_counts/plate9_D10417d0_1620.csv\x94\x8c/results/barcode_counts/plate9_D10417d0_4860.csv\x94\x8c0results/barcode_counts/plate9_D10417d0_14580.csv\x94\x8c0results/barcode_counts/plate9_D10417d0_43740.csv\x94\x8c1results/barcode_counts/plate9_D10417d0_131220.csv\x94\x8c1results/barcode_counts/plate9_D10417d0_393660.csv\x94\x8c(results/barcode_counts/plate9_none-3.csv\x94\x8c)results/barcode_counts/plate9_none-11.csv\x94\x8c/results/barcode_counts/plate9_D10181d182_20.csv\x94\x8c/results/barcode_counts/plate9_D10181d182_60.csv\x94\x8c0results/barcode_counts/plate9_D10181d182_180.csv\x94\x8c0results/barcode_counts/plate9_D10181d182_540.csv\x94\x8c1results/barcode_counts/plate9_D10181d182_1620.csv\x94\x8c1results/barcode_counts/plate9_D10181d182_4860.csv\x94\x8c2results/barcode_counts/plate9_D10181d182_14580.csv\x94\x8c2results/barcode_counts/plate9_D10181d182_43740.csv\x94\x8c3results/barcode_counts/plate9_D10181d182_131220.csv\x94\x8c3results/barcode_counts/plate9_D10181d182_393660.csv\x94\x8c(results/barcode_counts/plate9_none-4.csv\x94\x8c)results/barcode_counts/plate9_none-12.csv\x94\x8c.results/barcode_counts/plate9_D10181d30_20.csv\x94\x8c.results/barcode_counts/plate9_D10181d30_60.csv\x94\x8c/results/barcode_counts/plate9_D10181d30_180.csv\x94\x8c/results/barcode_counts/plate9_D10181d30_540.csv\x94\x8c0results/barcode_counts/plate9_D10181d30_1620.csv\x94\x8c0results/barcode_counts/plate9_D10181d30_4860.csv\x94\x8c1results/barcode_counts/plate9_D10181d30_14580.csv\x94\x8c1results/barcode_counts/plate9_D10181d30_43740.csv\x94\x8c2results/barcode_counts/plate9_D10181d30_131220.csv\x94\x8c2results/barcode_counts/plate9_D10181d30_393660.csv\x94\x8c(results/barcode_counts/plate9_none-5.csv\x94\x8c)results/barcode_counts/plate9_none-13.csv\x94\x8c-results/barcode_counts/plate9_D10181d0_20.csv\x94\x8c-results/barcode_counts/plate9_D10181d0_60.csv\x94\x8c.results/barcode_counts/plate9_D10181d0_180.csv\x94\x8c.results/barcode_counts/plate9_D10181d0_540.csv\x94\x8c/results/barcode_counts/plate9_D10181d0_1620.csv\x94\x8c/results/barcode_counts/plate9_D10181d0_4860.csv\x94\x8c0results/barcode_counts/plate9_D10181d0_14580.csv\x94\x8c0results/barcode_counts/plate9_D10181d0_43740.csv\x94\x8c1results/barcode_counts/plate9_D10181d0_131220.csv\x94\x8c1results/barcode_counts/plate9_D10181d0_393660.csv\x94\x8c(results/barcode_counts/plate9_none-6.csv\x94\x8c)results/barcode_counts/plate9_none-14.csv\x94\x8c.results/barcode_counts/plate9_D10291d30_20.csv\x94\x8c.results/barcode_counts/plate9_D10291d30_60.csv\x94\x8c/results/barcode_counts/plate9_D10291d30_180.csv\x94\x8c/results/barcode_counts/plate9_D10291d30_540.csv\x94\x8c0results/barcode_counts/plate9_D10291d30_1620.csv\x94\x8c0results/barcode_counts/plate9_D10291d30_4860.csv\x94\x8c1results/barcode_counts/plate9_D10291d30_14580.csv\x94\x8c1results/barcode_counts/plate9_D10291d30_43740.csv\x94\x8c2results/barcode_counts/plate9_D10291d30_131220.csv\x94\x8c2results/barcode_counts/plate9_D10291d30_393660.csv\x94\x8c(results/barcode_counts/plate9_none-7.csv\x94\x8c)results/barcode_counts/plate9_none-15.csv\x94\x8c-results/barcode_counts/plate9_D10291d0_20.csv\x94\x8c-results/barcode_counts/plate9_D10291d0_60.csv\x94\x8c.results/barcode_counts/plate9_D10291d0_180.csv\x94\x8c.results/barcode_counts/plate9_D10291d0_540.csv\x94\x8c/results/barcode_counts/plate9_D10291d0_1620.csv\x94\x8c/results/barcode_counts/plate9_D10291d0_4860.csv\x94\x8c0results/barcode_counts/plate9_D10291d0_14580.csv\x94\x8c0results/barcode_counts/plate9_D10291d0_43740.csv\x94\x8c1results/barcode_counts/plate9_D10291d0_131220.csv\x94\x8c1results/barcode_counts/plate9_D10291d0_393660.csv\x94\x8c(results/barcode_counts/plate9_none-8.csv\x94\x8c\'results/barcode_fates/plate9_none-1.csv\x94\x8c.results/barcode_fates/plate9_D10417d182_20.csv\x94\x8c.results/barcode_fates/plate9_D10417d182_60.csv\x94\x8c/results/barcode_fates/plate9_D10417d182_180.csv\x94\x8c/results/barcode_fates/plate9_D10417d182_540.csv\x94\x8c0results/barcode_fates/plate9_D10417d182_1620.csv\x94\x8c0results/barcode_fates/plate9_D10417d182_4860.csv\x94\x8c1results/barcode_fates/plate9_D10417d182_14580.csv\x94\x8c1results/barcode_fates/plate9_D10417d182_43740.csv\x94\x8c2results/barcode_fates/plate9_D10417d182_131220.csv\x94\x8c2results/barcode_fates/plate9_D10417d182_393660.csv\x94\x8c(results/barcode_fates/plate9_none-16.csv\x94\x8c\'results/barcode_fates/plate9_none-9.csv\x94\x8c-results/barcode_fates/plate9_D10417d30_20.csv\x94\x8c-results/barcode_fates/plate9_D10417d30_60.csv\x94\x8c.results/barcode_fates/plate9_D10417d30_180.csv\x94\x8c.results/barcode_fates/plate9_D10417d30_540.csv\x94\x8c/results/barcode_fates/plate9_D10417d30_1620.csv\x94\x8c/results/barcode_fates/plate9_D10417d30_4860.csv\x94\x8c0results/barcode_fates/plate9_D10417d30_14580.csv\x94\x8c0results/barcode_fates/plate9_D10417d30_43740.csv\x94\x8c1results/barcode_fates/plate9_D10417d30_131220.csv\x94\x8c1results/barcode_fates/plate9_D10417d30_393660.csv\x94\x8c\'results/barcode_fates/plate9_none-2.csv\x94\x8c(results/barcode_fates/plate9_none-10.csv\x94\x8c,results/barcode_fates/plate9_D10417d0_20.csv\x94\x8c,results/barcode_fates/plate9_D10417d0_60.csv\x94\x8c-results/barcode_fates/plate9_D10417d0_180.csv\x94\x8c-results/barcode_fates/plate9_D10417d0_540.csv\x94\x8c.results/barcode_fates/plate9_D10417d0_1620.csv\x94\x8c.results/barcode_fates/plate9_D10417d0_4860.csv\x94\x8c/results/barcode_fates/plate9_D10417d0_14580.csv\x94\x8c/results/barcode_fates/plate9_D10417d0_43740.csv\x94\x8c0results/barcode_fates/plate9_D10417d0_131220.csv\x94\x8c0results/barcode_fates/plate9_D10417d0_393660.csv\x94\x8c\'results/barcode_fates/plate9_none-3.csv\x94\x8c(results/barcode_fates/plate9_none-11.csv\x94\x8c.results/barcode_fates/plate9_D10181d182_20.csv\x94\x8c.results/barcode_fates/plate9_D10181d182_60.csv\x94\x8c/results/barcode_fates/plate9_D10181d182_180.csv\x94\x8c/results/barcode_fates/plate9_D10181d182_540.csv\x94\x8c0results/barcode_fates/plate9_D10181d182_1620.csv\x94\x8c0results/barcode_fates/plate9_D10181d182_4860.csv\x94\x8c1results/barcode_fates/plate9_D10181d182_14580.csv\x94\x8c1results/barcode_fates/plate9_D10181d182_43740.csv\x94\x8c2results/barcode_fates/plate9_D10181d182_131220.csv\x94\x8c2results/barcode_fates/plate9_D10181d182_393660.csv\x94\x8c\'results/barcode_fates/plate9_none-4.csv\x94\x8c(results/barcode_fates/plate9_none-12.csv\x94\x8c-results/barcode_fates/plate9_D10181d30_20.csv\x94\x8c-results/barcode_fates/plate9_D10181d30_60.csv\x94\x8c.results/barcode_fates/plate9_D10181d30_180.csv\x94\x8c.results/barcode_fates/plate9_D10181d30_540.csv\x94\x8c/results/barcode_fates/plate9_D10181d30_1620.csv\x94\x8c/results/barcode_fates/plate9_D10181d30_4860.csv\x94\x8c0results/barcode_fates/plate9_D10181d30_14580.csv\x94\x8c0results/barcode_fates/plate9_D10181d30_43740.csv\x94\x8c1results/barcode_fates/plate9_D10181d30_131220.csv\x94\x8c1results/barcode_fates/plate9_D10181d30_393660.csv\x94\x8c\'results/barcode_fates/plate9_none-5.csv\x94\x8c(results/barcode_fates/plate9_none-13.csv\x94\x8c,results/barcode_fates/plate9_D10181d0_20.csv\x94\x8c,results/barcode_fates/plate9_D10181d0_60.csv\x94\x8c-results/barcode_fates/plate9_D10181d0_180.csv\x94\x8c-results/barcode_fates/plate9_D10181d0_540.csv\x94\x8c.results/barcode_fates/plate9_D10181d0_1620.csv\x94\x8c.results/barcode_fates/plate9_D10181d0_4860.csv\x94\x8c/results/barcode_fates/plate9_D10181d0_14580.csv\x94\x8c/results/barcode_fates/plate9_D10181d0_43740.csv\x94\x8c0results/barcode_fates/plate9_D10181d0_131220.csv\x94\x8c0results/barcode_fates/plate9_D10181d0_393660.csv\x94\x8c\'results/barcode_fates/plate9_none-6.csv\x94\x8c(results/barcode_fates/plate9_none-14.csv\x94\x8c-results/barcode_fates/plate9_D10291d30_20.csv\x94\x8c-results/barcode_fates/plate9_D10291d30_60.csv\x94\x8c.results/barcode_fates/plate9_D10291d30_180.csv\x94\x8c.results/barcode_fates/plate9_D10291d30_540.csv\x94\x8c/results/barcode_fates/plate9_D10291d30_1620.csv\x94\x8c/results/barcode_fates/plate9_D10291d30_4860.csv\x94\x8c0results/barcode_fates/plate9_D10291d30_14580.csv\x94\x8c0results/barcode_fates/plate9_D10291d30_43740.csv\x94\x8c1results/barcode_fates/plate9_D10291d30_131220.csv\x94\x8c1results/barcode_fates/plate9_D10291d30_393660.csv\x94\x8c\'results/barcode_fates/plate9_none-7.csv\x94\x8c(results/barcode_fates/plate9_none-15.csv\x94\x8c,results/barcode_fates/plate9_D10291d0_20.csv\x94\x8c,results/barcode_fates/plate9_D10291d0_60.csv\x94\x8c-results/barcode_fates/plate9_D10291d0_180.csv\x94\x8c-results/barcode_fates/plate9_D10291d0_540.csv\x94\x8c.results/barcode_fates/plate9_D10291d0_1620.csv\x94\x8c.results/barcode_fates/plate9_D10291d0_4860.csv\x94\x8c/results/barcode_fates/plate9_D10291d0_14580.csv\x94\x8c/results/barcode_fates/plate9_D10291d0_43740.csv\x94\x8c0results/barcode_fates/plate9_D10291d0_131220.csv\x94\x8c0results/barcode_fates/plate9_D10291d0_393660.csv\x94\x8c\'results/barcode_fates/plate9_none-8.csv\x94\x8c-data/viral_libraries/pdmH1N1_lib2023_loes.csv\x94\x8c3data/neut_standard_sets/loes2023_neut_standards.csv\x94e}\x94(\x8c\x06_names\x94}\x94(\x8c\ncount_csvs\x94K\x00K`\x86\x94\x8c\tfate_csvs\x94K`K\xc0\x86\x94\x8c\x11viral_library_csv\x94K\xc0N\x86\x94\x8c\x15neut_standard_set_csv\x94K\xc1N\x86\x94u\x8c\x12_allowed_overrides\x94]\x94(\x8c\x05index\x94\x8c\x04sort\x94eh\xd9\x8c\tfunctools\x94\x8c\x07partial\x94\x93\x94h\x06\x8c\x19Namedlist._used_attribute\x94\x93\x94\x85\x94R\x94(h\xdf)}\x94\x8c\x05_name\x94h\xd9sNt\x94bh\xdah\xddh\xdf\x85\x94R\x94(h\xdf)}\x94h\xe3h\xdasNt\x94bh\xcfh\x06\x8c\tNamedlist\x94\x93\x94)\x81\x94(h\nh\x0bh\x0ch\rh\x0eh\x0fh\x10h\x11h\x12h\x13h\x14h\x15h\x16h\x17h\x18h\x19h\x1ah\x1bh\x1ch\x1dh\x1eh\x1fh h!h"h#h$h%h&h\'h(h)h*h+h,h-h.h/h0h1h2h3h4h5h6h7h8h9h:h;h<h=h>h?h@hAhBhChDhEhFhGhHhIhJhKhLhMhNhOhPhQhRhShThUhVhWhXhYhZh[h\\h]h^h_h`hahbhchdhehfhghhhie}\x94(h\xcd}\x94h\xd7]\x94(h\xd9h\xdaeh\xd9h\xddh\xdf\x85\x94R\x94(h\xdf)}\x94h\xe3h\xd9sNt\x94bh\xdah\xddh\xdf\x85\x94R\x94(h\xdf)}\x94h\xe3h\xdasNt\x94bubh\xd1h\xea)\x81\x94(hjhkhlhmhnhohphqhrhshthuhvhwhxhyhzh{h|h}h~h\x7fh\x80h\x81h\x82h\x83h\x84h\x85h\x86h\x87h\x88h\x89h\x8ah\x8bh\x8ch\x8dh\x8eh\x8fh\x90h\x91h\x92h\x93h\x94h\x95h\x96h\x97h\x98h\x99h\x9ah\x9bh\x9ch\x9dh\x9eh\x9fh\xa0h\xa1h\xa2h\xa3h\xa4h\xa5h\xa6h\xa7h\xa8h\xa9h\xaah\xabh\xach\xadh\xaeh\xafh\xb0h\xb1h\xb2h\xb3h\xb4h\xb5h\xb6h\xb7h\xb8h\xb9h\xbah\xbbh\xbch\xbdh\xbeh\xbfh\xc0h\xc1h\xc2h\xc3h\xc4h\xc5h\xc6h\xc7h\xc8h\xc9e}\x94(h\xcd}\x94h\xd7]\x94(h\xd9h\xdaeh\xd9h\xddh\xdf\x85\x94R\x94(h\xdf)}\x94h\xe3h\xd9sNt\x94bh\xdah\xddh\xdf\x85\x94R\x94(h\xdf)}\x94h\xe3h\xdasNt\x94bubh\xd3h\xcah\xd5h\xcbub\x8c\x06output\x94h\x06\x8c\x0bOutputFiles\x94\x93\x94)\x81\x94(\x8c"results/plates/plate9/qc_drops.yml\x94\x8c*results/plates/plate9/frac_infectivity.csv\x94\x8c#results/plates/plate9/curvefits.csv\x94\x8c&results/plates/plate9/curvefits.pickle\x94e}\x94(h\xcd}\x94(\x8c\x08qc_drops\x94K\x00N\x86\x94\x8c\x14frac_infectivity_csv\x94K\x01N\x86\x94\x8c\x08fits_csv\x94K\x02N\x86\x94\x8c\x0bfits_pickle\x94K\x03N\x86\x94uh\xd7]\x94(h\xd9h\xdaeh\xd9h\xddh\xdf\x85\x94R\x94(h\xdf)}\x94h\xe3h\xd9sNt\x94bh\xdah\xddh\xdf\x85\x94R\x94(h\xdf)}\x94h\xe3h\xdasNt\x94bj\r\x01\x00\x00j\x07\x01\x00\x00j\x0f\x01\x00\x00j\x08\x01\x00\x00j\x11\x01\x00\x00j\t\x01\x00\x00j\x13\x01\x00\x00j\n\x01\x00\x00ub\x8c\x06params\x94h\x06\x8c\x06Params\x94\x93\x94)\x81\x94(]\x94(\x8c\rplate9_none-1\x94\x8c\x14plate9_D10417d182_20\x94\x8c\x14plate9_D10417d182_60\x94\x8c\x15plate9_D10417d182_180\x94\x8c\x15plate9_D10417d182_540\x94\x8c\x16plate9_D10417d182_1620\x94\x8c\x16plate9_D10417d182_4860\x94\x8c\x17plate9_D10417d182_14580\x94\x8c\x17plate9_D10417d182_43740\x94\x8c\x18plate9_D10417d182_131220\x94\x8c\x18plate9_D10417d182_393660\x94\x8c\x0eplate9_none-16\x94\x8c\rplate9_none-9\x94\x8c\x13plate9_D10417d30_20\x94\x8c\x13plate9_D10417d30_60\x94\x8c\x14plate9_D10417d30_180\x94\x8c\x14plate9_D10417d30_540\x94\x8c\x15plate9_D10417d30_1620\x94\x8c\x15plate9_D10417d30_4860\x94\x8c\x16plate9_D10417d30_14580\x94\x8c\x16plate9_D10417d30_43740\x94\x8c\x17plate9_D10417d30_131220\x94\x8c\x17plate9_D10417d30_393660\x94\x8c\rplate9_none-2\x94\x8c\x0eplate9_none-10\x94\x8c\x12plate9_D10417d0_20\x94\x8c\x12plate9_D10417d0_60\x94\x8c\x13plate9_D10417d0_180\x94\x8c\x13plate9_D10417d0_540\x94\x8c\x14plate9_D10417d0_1620\x94\x8c\x14plate9_D10417d0_4860\x94\x8c\x15plate9_D10417d0_14580\x94\x8c\x15plate9_D10417d0_43740\x94\x8c\x16plate9_D10417d0_131220\x94\x8c\x16plate9_D10417d0_393660\x94\x8c\rplate9_none-3\x94\x8c\x0eplate9_none-11\x94\x8c\x14plate9_D10181d182_20\x94\x8c\x14plate9_D10181d182_60\x94\x8c\x15plate9_D10181d182_180\x94\x8c\x15plate9_D10181d182_540\x94\x8c\x16plate9_D10181d182_1620\x94\x8c\x16plate9_D10181d182_4860\x94\x8c\x17plate9_D10181d182_14580\x94\x8c\x17plate9_D10181d182_43740\x94\x8c\x18plate9_D10181d182_131220\x94\x8c\x18plate9_D10181d182_393660\x94\x8c\rplate9_none-4\x94\x8c\x0eplate9_none-12\x94\x8c\x13plate9_D10181d30_20\x94\x8c\x13plate9_D10181d30_60\x94\x8c\x14plate9_D10181d30_180\x94\x8c\x14plate9_D10181d30_540\x94\x8c\x15plate9_D10181d30_1620\x94\x8c\x15plate9_D10181d30_4860\x94\x8c\x16plate9_D10181d30_14580\x94\x8c\x16plate9_D10181d30_43740\x94\x8c\x17plate9_D10181d30_131220\x94\x8c\x17plate9_D10181d30_393660\x94\x8c\rplate9_none-5\x94\x8c\x0eplate9_none-13\x94\x8c\x12plate9_D10181d0_20\x94\x8c\x12plate9_D10181d0_60\x94\x8c\x13plate9_D10181d0_180\x94\x8c\x13plate9_D10181d0_540\x94\x8c\x14plate9_D10181d0_1620\x94\x8c\x14plate9_D10181d0_4860\x94\x8c\x15plate9_D10181d0_14580\x94\x8c\x15plate9_D10181d0_43740\x94\x8c\x16plate9_D10181d0_131220\x94\x8c\x16plate9_D10181d0_393660\x94\x8c\rplate9_none-6\x94\x8c\x0eplate9_none-14\x94\x8c\x13plate9_D10291d30_20\x94\x8c\x13plate9_D10291d30_60\x94\x8c\x14plate9_D10291d30_180\x94\x8c\x14plate9_D10291d30_540\x94\x8c\x15plate9_D10291d30_1620\x94\x8c\x15plate9_D10291d30_4860\x94\x8c\x16plate9_D10291d30_14580\x94\x8c\x16plate9_D10291d30_43740\x94\x8c\x17plate9_D10291d30_131220\x94\x8c\x17plate9_D10291d30_393660\x94\x8c\rplate9_none-7\x94\x8c\x0eplate9_none-15\x94\x8c\x12plate9_D10291d0_20\x94\x8c\x12plate9_D10291d0_60\x94\x8c\x13plate9_D10291d0_180\x94\x8c\x13plate9_D10291d0_540\x94\x8c\x14plate9_D10291d0_1620\x94\x8c\x14plate9_D10291d0_4860\x94\x8c\x15plate9_D10291d0_14580\x94\x8c\x15plate9_D10291d0_43740\x94\x8c\x16plate9_D10291d0_131220\x94\x8c\x16plate9_D10291d0_393660\x94\x8c\rplate9_none-8\x94e}\x94(\x8c\x05group\x94\x8c\x05DRIVE\x94\x8c\x04date\x94\x8c\n2023-08-05\x94\x8c\rviral_library\x94\x8c\x14pdmH1N1_lib2023_loes\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c\x1edata/plates/plate9_samples.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\x18barcode_serum_replicates\x94]\x94]\x94(\x8c\x10CGGATAAAAATGATAT\x94\x8c\tD10417d30\x94eas\x8c\rqc_thresholds\x94}\x94(\x8c\x1bavg_barcode_counts_per_well\x94M\xe8\x03\x8c\x1fmin_neut_standard_frac_per_well\x94G?tz\xe1G\xae\x14{\x8c"no_serum_per_viral_barcode_filters\x94}\x94(\x8c\x08min_frac\x94G?@bM\xd2\xf1\xa9\xfc\x8c\x0fmax_fold_change\x94K\x04\x8c\tmax_wells\x94K\x02u\x8c!per_neut_standard_barcode_filters\x94}\x94(\x8c\x08min_frac\x94G?tz\xe1G\xae\x14{\x8c\x0fmax_fold_change\x94K\x04\x8c\tmax_wells\x94K\x02u\x8c min_neut_standard_count_per_well\x94M\xe8\x03\x8c)min_no_serum_count_per_viral_barcode_well\x94M\xf4\x01\x8c+max_frac_infectivity_per_viral_barcode_well\x94K\x05\x8c)min_dilutions_per_barcode_serum_replicate\x94K\x06u\x8c\x0fcurvefit_params\x94}\x94(\x8c\x18frac_infectivity_ceiling\x94K\x01\x8c\x06fixtop\x94]\x94(G?\xe0\x00\x00\x00\x00\x00\x00K\x01e\x8c\tfixbottom\x94K\x00\x8c\x08fixslope\x94]\x94(G?\xe9\x99\x99\x99\x99\x99\x9aK\neu\x8c\x0bcurvefit_qc\x94}\x94(\x8c\x1dmax_frac_infectivity_at_least\x94G?\xe0\x00\x00\x00\x00\x00\x00\x8c\x0fgoodness_of_fit\x94}\x94(\x8c\x06min_R2\x94G?\xe3333333\x8c\x08max_RMSD\x94G?\xb9\x99\x99\x99\x99\x99\x9au\x8c#serum_replicates_ignore_curvefit_qc\x94]\x94\x8c+barcode_serum_replicates_ignore_curvefit_qc\x94]\x94u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\x08upstream\x94\x8c\x1cCCTACAATGTCGGATTTGTATTTAATAG\x94\x8c\ndownstream\x94\x8c\x00\x94\x8c\x04minq\x94K\x14\x8c\x11upstream_mismatch\x94K\x04\x8c\x0ebc_orientation\x94\x8c\x02R2\x94u\x8c\x07samples\x94}\x94(\x8c\x04well\x94}\x94(K\x00\x8c\x02A1\x94K\x01\x8c\x02A2\x94K\x02\x8c\x02A3\x94K\x03\x8c\x02A4\x94K\x04\x8c\x02A5\x94K\x05\x8c\x02A6\x94K\x06\x8c\x02A7\x94K\x07\x8c\x02A8\x94K\x08\x8c\x02A9\x94K\t\x8c\x03A10\x94K\n\x8c\x03A11\x94K\x0b\x8c\x03A12\x94K\x0c\x8c\x02B1\x94K\r\x8c\x02B2\x94K\x0e\x8c\x02B3\x94K\x0f\x8c\x02B4\x94K\x10\x8c\x02B5\x94K\x11\x8c\x02B6\x94K\x12\x8c\x02B7\x94K\x13\x8c\x02B8\x94K\x14\x8c\x02B9\x94K\x15\x8c\x03B10\x94K\x16\x8c\x03B11\x94K\x17\x8c\x03B12\x94K\x18\x8c\x02C1\x94K\x19\x8c\x02C2\x94K\x1a\x8c\x02C3\x94K\x1b\x8c\x02C4\x94K\x1c\x8c\x02C5\x94K\x1d\x8c\x02C6\x94K\x1e\x8c\x02C7\x94K\x1f\x8c\x02C8\x94K \x8c\x02C9\x94K!\x8c\x03C10\x94K"\x8c\x03C11\x94K#\x8c\x03C12\x94K$\x8c\x02D1\x94K%\x8c\x02D2\x94K&\x8c\x02D3\x94K\'\x8c\x02D4\x94K(\x8c\x02D5\x94K)\x8c\x02D6\x94K*\x8c\x02D7\x94K+\x8c\x02D8\x94K,\x8c\x02D9\x94K-\x8c\x03D10\x94K.\x8c\x03D11\x94K/\x8c\x03D12\x94K0\x8c\x02E1\x94K1\x8c\x02E2\x94K2\x8c\x02E3\x94K3\x8c\x02E4\x94K4\x8c\x02E5\x94K5\x8c\x02E6\x94K6\x8c\x02E7\x94K7\x8c\x02E8\x94K8\x8c\x02E9\x94K9\x8c\x03E10\x94K:\x8c\x03E11\x94K;\x8c\x03E12\x94K<\x8c\x02F1\x94K=\x8c\x02F2\x94K>\x8c\x02F3\x94K?\x8c\x02F4\x94K@\x8c\x02F5\x94KA\x8c\x02F6\x94KB\x8c\x02F7\x94KC\x8c\x02F8\x94KD\x8c\x02F9\x94KE\x8c\x03F10\x94KF\x8c\x03F11\x94KG\x8c\x03F12\x94KH\x8c\x02G1\x94KI\x8c\x02G2\x94KJ\x8c\x02G3\x94KK\x8c\x02G4\x94KL\x8c\x02G5\x94KM\x8c\x02G6\x94KN\x8c\x02G7\x94KO\x8c\x02G8\x94KP\x8c\x02G9\x94KQ\x8c\x03G10\x94KR\x8c\x03G11\x94KS\x8c\x03G12\x94KT\x8c\x02H1\x94KU\x8c\x02H2\x94KV\x8c\x02H3\x94KW\x8c\x02H4\x94KX\x8c\x02H5\x94KY\x8c\x02H6\x94KZ\x8c\x02H7\x94K[\x8c\x02H8\x94K\\\x8c\x02H9\x94K]\x8c\x03H10\x94K^\x8c\x03H11\x94K_\x8c\x03H12\x94u\x8c\x05serum\x94}\x94(K\x00\x8c\x04none\x94K\x01\x8c\nD10417d182\x94K\x02j+\x02\x00\x00K\x03j+\x02\x00\x00K\x04j+\x02\x00\x00K\x05j+\x02\x00\x00K\x06j+\x02\x00\x00K\x07j+\x02\x00\x00K\x08j+\x02\x00\x00K\tj+\x02\x00\x00K\nj+\x02\x00\x00K\x0bj*\x02\x00\x00K\x0cj*\x02\x00\x00K\r\x8c\tD10417d30\x94K\x0ej,\x02\x00\x00K\x0fj,\x02\x00\x00K\x10j,\x02\x00\x00K\x11j,\x02\x00\x00K\x12j,\x02\x00\x00K\x13j,\x02\x00\x00K\x14j,\x02\x00\x00K\x15j,\x02\x00\x00K\x16j,\x02\x00\x00K\x17j*\x02\x00\x00K\x18j*\x02\x00\x00K\x19\x8c\x08D10417d0\x94K\x1aj-\x02\x00\x00K\x1bj-\x02\x00\x00K\x1cj-\x02\x00\x00K\x1dj-\x02\x00\x00K\x1ej-\x02\x00\x00K\x1fj-\x02\x00\x00K j-\x02\x00\x00K!j-\x02\x00\x00K"j-\x02\x00\x00K#j*\x02\x00\x00K$j*\x02\x00\x00K%\x8c\nD10181d182\x94K&j.\x02\x00\x00K\'j.\x02\x00\x00K(j.\x02\x00\x00K)j.\x02\x00\x00K*j.\x02\x00\x00K+j.\x02\x00\x00K,j.\x02\x00\x00K-j.\x02\x00\x00K.j.\x02\x00\x00K/j*\x02\x00\x00K0j*\x02\x00\x00K1\x8c\tD10181d30\x94K2j/\x02\x00\x00K3j/\x02\x00\x00K4j/\x02\x00\x00K5j/\x02\x00\x00K6j/\x02\x00\x00K7j/\x02\x00\x00K8j/\x02\x00\x00K9j/\x02\x00\x00K:j/\x02\x00\x00K;j*\x02\x00\x00K<j*\x02\x00\x00K=\x8c\x08D10181d0\x94K>j0\x02\x00\x00K?j0\x02\x00\x00K@j0\x02\x00\x00KAj0\x02\x00\x00KBj0\x02\x00\x00KCj0\x02\x00\x00KDj0\x02\x00\x00KEj0\x02\x00\x00KFj0\x02\x00\x00KGj*\x02\x00\x00KHj*\x02\x00\x00KI\x8c\tD10291d30\x94KJj1\x02\x00\x00KKj1\x02\x00\x00KLj1\x02\x00\x00KMj1\x02\x00\x00KNj1\x02\x00\x00KOj1\x02\x00\x00KPj1\x02\x00\x00KQj1\x02\x00\x00KRj1\x02\x00\x00KSj*\x02\x00\x00KTj*\x02\x00\x00KU\x8c\x08D10291d0\x94KVj2\x02\x00\x00KWj2\x02\x00\x00KXj2\x02\x00\x00KYj2\x02\x00\x00KZj2\x02\x00\x00K[j2\x02\x00\x00K\\j2\x02\x00\x00K]j2\x02\x00\x00K^j2\x02\x00\x00K_j*\x02\x00\x00u\x8c\x0fdilution_factor\x94}\x94(K\x00NK\x01K\x14K\x02K<K\x03K\xb4K\x04M\x1c\x02K\x05MT\x06K\x06M\xfc\x12K\x07M\xf48K\x08M\xdc\xaaK\tJ\x94\x00\x02\x00K\nJ\xbc\x01\x06\x00K\x0bNK\x0cNK\rK\x14K\x0eK<K\x0fK\xb4K\x10M\x1c\x02K\x11MT\x06K\x12M\xfc\x12K\x13M\xf48K\x14M\xdc\xaaK\x15J\x94\x00\x02\x00K\x16J\xbc\x01\x06\x00K\x17NK\x18NK\x19K\x14K\x1aK<K\x1bK\xb4K\x1cM\x1c\x02K\x1dMT\x06K\x1eM\xfc\x12K\x1fM\xf48K M\xdc\xaaK!J\x94\x00\x02\x00K"J\xbc\x01\x06\x00K#NK$NK%K\x14K&K<K\'K\xb4K(M\x1c\x02K)MT\x06K*M\xfc\x12K+M\xf48K,M\xdc\xaaK-J\x94\x00\x02\x00K.J\xbc\x01\x06\x00K/NK0NK1K\x14K2K<K3K\xb4K4M\x1c\x02K5MT\x06K6M\xfc\x12K7M\xf48K8M\xdc\xaaK9J\x94\x00\x02\x00K:J\xbc\x01\x06\x00K;NK<NK=K\x14K>K<K?K\xb4K@M\x1c\x02KAMT\x06KBM\xfc\x12KCM\xf48KDM\xdc\xaaKEJ\x94\x00\x02\x00KFJ\xbc\x01\x06\x00KGNKHNKIK\x14KJK<KKK\xb4KLM\x1c\x02KMMT\x06KNM\xfc\x12KOM\xf48KPM\xdc\xaaKQJ\x94\x00\x02\x00KRJ\xbc\x01\x06\x00KSNKTNKUK\x14KVK<KWK\xb4KXM\x1c\x02KYMT\x06KZM\xfc\x12K[M\xf48K\\M\xdc\xaaK]J\x94\x00\x02\x00K^J\xbc\x01\x06\x00K_Nu\x8c\treplicate\x94}\x94(K\x00K\x01K\x01K\x01K\x02K\x01K\x03K\x01K\x04K\x01K\x05K\x01K\x06K\x01K\x07K\x01K\x08K\x01K\tK\x01K\nK\x01K\x0bK\x10K\x0cK\tK\rK\x01K\x0eK\x01K\x0fK\x01K\x10K\x01K\x11K\x01K\x12K\x01K\x13K\x01K\x14K\x01K\x15K\x01K\x16K\x01K\x17K\x02K\x18K\nK\x19K\x01K\x1aK\x01K\x1bK\x01K\x1cK\x01K\x1dK\x01K\x1eK\x01K\x1fK\x01K K\x01K!K\x01K"K\x01K#K\x03K$K\x0bK%K\x01K&K\x01K\'K\x01K(K\x01K)K\x01K*K\x01K+K\x01K,K\x01K-K\x01K.K\x01K/K\x04K0K\x0cK1K\x01K2K\x01K3K\x01K4K\x01K5K\x01K6K\x01K7K\x01K8K\x01K9K\x01K:K\x01K;K\x05K<K\rK=K\x01K>K\x01K?K\x01K@K\x01KAK\x01KBK\x01KCK\x01KDK\x01KEK\x01KFK\x01KGK\x06KHK\x0eKIK\x01KJK\x01KKK\x01KLK\x01KMK\x01KNK\x01KOK\x01KPK\x01KQK\x01KRK\x01KSK\x07KTK\x0fKUK\x01KVK\x01KWK\x01KXK\x01KYK\x01KZK\x01K[K\x01K\\K\x01K]K\x01K^K\x01K_K\x08u\x8c\x05fastq\x94}\x94(K\x00\x8c~/fh/fast/bloom_j/SR/ngs/illumina/aloes/230809_VH01189_145_AACYLJHM5/Unaligned/Project_aloes/Plate9_Noserum1_S1_R1_001.fastq.gz\x94K\x01\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d182_conc1_S9_R1_001.fastq.gz\x94K\x02\x8c\xcb/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d182_conc2_S17_R1_001.fastq.gz\x94K\x03\x8c\xcb/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d182_conc3_S25_R1_001.fastq.gz\x94K\x04\x8c\xcb/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d182_conc4_S33_R1_001.fastq.gz\x94K\x05\x8c\xcb/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d182_conc5_S41_R1_001.fastq.gz\x94K\x06\x8c\xcb/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d182_conc6_S49_R1_001.fastq.gz\x94K\x07\x8c\xcb/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d182_conc7_S57_R1_001.fastq.gz\x94K\x08\x8c\xcb/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d182_conc8_S65_R1_001.fastq.gz\x94K\t\x8c\xcb/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d182_conc9_S73_R1_001.fastq.gz\x94K\n\x8c\xcc/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d182_conc10_S81_R1_001.fastq.gz\x94K\x0b\x8c\x7f/fh/fast/bloom_j/SR/ngs/illumina/aloes/230809_VH01189_145_AACYLJHM5/Unaligned/Project_aloes/Plate9_Noserum9_S89_R1_001.fastq.gz\x94K\x0c\x8c~/fh/fast/bloom_j/SR/ngs/illumina/aloes/230809_VH01189_145_AACYLJHM5/Unaligned/Project_aloes/Plate9_Noserum2_S2_R1_001.fastq.gz\x94K\r\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d30_conc1_S10_R1_001.fastq.gz\x94K\x0e\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d30_conc2_S18_R1_001.fastq.gz\x94K\x0f\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d30_conc3_S26_R1_001.fastq.gz\x94K\x10\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d30_conc4_S34_R1_001.fastq.gz\x94K\x11\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d30_conc5_S42_R1_001.fastq.gz\x94K\x12\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d30_conc6_S50_R1_001.fastq.gz\x94K\x13\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d30_conc7_S58_R1_001.fastq.gz\x94K\x14\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d30_conc8_S66_R1_001.fastq.gz\x94K\x15\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d30_conc9_S74_R1_001.fastq.gz\x94K\x16\x8c\xcb/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d30_conc10_S82_R1_001.fastq.gz\x94K\x17\x8c\x80/fh/fast/bloom_j/SR/ngs/illumina/aloes/230809_VH01189_145_AACYLJHM5/Unaligned/Project_aloes/Plate9_Noserum10_S90_R1_001.fastq.gz\x94K\x18\x8c~/fh/fast/bloom_j/SR/ngs/illumina/aloes/230809_VH01189_145_AACYLJHM5/Unaligned/Project_aloes/Plate9_Noserum3_S3_R1_001.fastq.gz\x94K\x19\x8c\xc9/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d0_conc1_S11_R1_001.fastq.gz\x94K\x1a\x8c\xc9/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d0_conc2_S19_R1_001.fastq.gz\x94K\x1b\x8c\xc9/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d0_conc3_S27_R1_001.fastq.gz\x94K\x1c\x8c\xc9/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d0_conc4_S35_R1_001.fastq.gz\x94K\x1d\x8c\xc9/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d0_conc5_S43_R1_001.fastq.gz\x94K\x1e\x8c\xc9/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d0_conc6_S51_R1_001.fastq.gz\x94K\x1f\x8c\xc9/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d0_conc7_S59_R1_001.fastq.gz\x94K \x8c\xc9/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d0_conc8_S67_R1_001.fastq.gz\x94K!\x8c\xc9/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d0_conc9_S75_R1_001.fastq.gz\x94K"\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10417_d0_conc10_S83_R1_001.fastq.gz\x94K#\x8c\x80/fh/fast/bloom_j/SR/ngs/illumina/aloes/230809_VH01189_145_AACYLJHM5/Unaligned/Project_aloes/Plate9_Noserum11_S91_R1_001.fastq.gz\x94K$\x8c~/fh/fast/bloom_j/SR/ngs/illumina/aloes/230809_VH01189_145_AACYLJHM5/Unaligned/Project_aloes/Plate9_Noserum4_S4_R1_001.fastq.gz\x94K%\x8c\xcb/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d182_conc1_S12_R1_001.fastq.gz\x94K&\x8c\xcb/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d182_conc2_S20_R1_001.fastq.gz\x94K\'\x8c\xcb/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d182_conc3_S28_R1_001.fastq.gz\x94K(\x8c\xcb/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d182_conc4_S36_R1_001.fastq.gz\x94K)\x8c\xcb/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d182_conc5_S44_R1_001.fastq.gz\x94K*\x8c\xcb/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d182_conc6_S52_R1_001.fastq.gz\x94K+\x8c\xcb/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d182_conc7_S60_R1_001.fastq.gz\x94K,\x8c\xcb/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d182_conc8_S68_R1_001.fastq.gz\x94K-\x8c\xcb/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d182_conc9_S76_R1_001.fastq.gz\x94K.\x8c\xcc/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d182_conc10_S84_R1_001.fastq.gz\x94K/\x8c\x80/fh/fast/bloom_j/SR/ngs/illumina/aloes/230809_VH01189_145_AACYLJHM5/Unaligned/Project_aloes/Plate9_Noserum12_S92_R1_001.fastq.gz\x94K0\x8c~/fh/fast/bloom_j/SR/ngs/illumina/aloes/230809_VH01189_145_AACYLJHM5/Unaligned/Project_aloes/Plate9_Noserum5_S5_R1_001.fastq.gz\x94K1\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d30_conc1_S13_R1_001.fastq.gz\x94K2\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d30_conc2_S21_R1_001.fastq.gz\x94K3\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d30_conc3_S29_R1_001.fastq.gz\x94K4\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d30_conc4_S37_R1_001.fastq.gz\x94K5\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d30_conc5_S45_R1_001.fastq.gz\x94K6\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d30_conc6_S53_R1_001.fastq.gz\x94K7\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d30_conc7_S61_R1_001.fastq.gz\x94K8\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d30_conc8_S69_R1_001.fastq.gz\x94K9\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d30_conc9_S77_R1_001.fastq.gz\x94K:\x8c\xcb/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d30_conc10_S85_R1_001.fastq.gz\x94K;\x8c\x80/fh/fast/bloom_j/SR/ngs/illumina/aloes/230809_VH01189_145_AACYLJHM5/Unaligned/Project_aloes/Plate9_Noserum13_S93_R1_001.fastq.gz\x94K<\x8c~/fh/fast/bloom_j/SR/ngs/illumina/aloes/230809_VH01189_145_AACYLJHM5/Unaligned/Project_aloes/Plate9_Noserum6_S6_R1_001.fastq.gz\x94K=\x8c\xc9/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d0_conc1_S14_R1_001.fastq.gz\x94K>\x8c\xc9/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d0_conc2_S22_R1_001.fastq.gz\x94K?\x8c\xc9/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d0_conc3_S30_R1_001.fastq.gz\x94K@\x8c\xc9/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d0_conc4_S38_R1_001.fastq.gz\x94KA\x8c\xc9/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d0_conc5_S46_R1_001.fastq.gz\x94KB\x8c\xc9/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d0_conc6_S54_R1_001.fastq.gz\x94KC\x8c\xc9/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d0_conc7_S62_R1_001.fastq.gz\x94KD\x8c\xc9/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d0_conc8_S70_R1_001.fastq.gz\x94KE\x8c\xc9/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d0_conc9_S78_R1_001.fastq.gz\x94KF\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10181_d0_conc10_S86_R1_001.fastq.gz\x94KG\x8c\x80/fh/fast/bloom_j/SR/ngs/illumina/aloes/230809_VH01189_145_AACYLJHM5/Unaligned/Project_aloes/Plate9_Noserum14_S94_R1_001.fastq.gz\x94KH\x8c~/fh/fast/bloom_j/SR/ngs/illumina/aloes/230809_VH01189_145_AACYLJHM5/Unaligned/Project_aloes/Plate9_Noserum7_S7_R1_001.fastq.gz\x94KI\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10291_d30_conc1_S15_R1_001.fastq.gz\x94KJ\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10291_d30_conc2_S23_R1_001.fastq.gz\x94KK\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10291_d30_conc3_S31_R1_001.fastq.gz\x94KL\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10291_d30_conc4_S39_R1_001.fastq.gz\x94KM\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10291_d30_conc5_S47_R1_001.fastq.gz\x94KN\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10291_d30_conc6_S55_R1_001.fastq.gz\x94KO\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10291_d30_conc7_S63_R1_001.fastq.gz\x94KP\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10291_d30_conc8_S71_R1_001.fastq.gz\x94KQ\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10291_d30_conc9_S79_R1_001.fastq.gz\x94KR\x8c\xcb/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10291_d30_conc10_S87_R1_001.fastq.gz\x94KS\x8c\x80/fh/fast/bloom_j/SR/ngs/illumina/aloes/230809_VH01189_145_AACYLJHM5/Unaligned/Project_aloes/Plate9_Noserum15_S95_R1_001.fastq.gz\x94KT\x8c~/fh/fast/bloom_j/SR/ngs/illumina/aloes/230809_VH01189_145_AACYLJHM5/Unaligned/Project_aloes/Plate9_Noserum8_S8_R1_001.fastq.gz\x94KU\x8c\xc9/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10291_d0_conc1_S16_R1_001.fastq.gz\x94KV\x8c\xc9/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10291_d0_conc2_S24_R1_001.fastq.gz\x94KW\x8c\xc9/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10291_d0_conc3_S32_R1_001.fastq.gz\x94KX\x8c\xc9/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10291_d0_conc4_S40_R1_001.fastq.gz\x94KY\x8c\xc9/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10291_d0_conc5_S48_R1_001.fastq.gz\x94KZ\x8c\xc9/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10291_d0_conc6_S56_R1_001.fastq.gz\x94K[\x8c\xc9/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10291_d0_conc7_S64_R1_001.fastq.gz\x94K\\\x8c\xc9/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10291_d0_conc8_S72_R1_001.fastq.gz\x94K]\x8c\xc9/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10291_d0_conc9_S80_R1_001.fastq.gz\x94K^\x8c\xca/fh/fast/bloom_j/computational_notebooks/jbloom/2024/DRIVE_fastq_symlinks/_fh_fast_bloom_j_SR_ngs_illumina_aloes_230809_VH01189_145_AACYLJHM5_Unaligned_Project_aloes_D10291_d0_conc10_S88_R1_001.fastq.gz\x94K_\x8c\x80/fh/fast/bloom_j/SR/ngs/illumina/aloes/230809_VH01189_145_AACYLJHM5/Unaligned/Project_aloes/Plate9_Noserum16_S96_R1_001.fastq.gz\x94u\x8c\x0fserum_replicate\x94}\x94(K\x00\x8c\x06none-1\x94K\x01j+\x02\x00\x00K\x02j+\x02\x00\x00K\x03j+\x02\x00\x00K\x04j+\x02\x00\x00K\x05j+\x02\x00\x00K\x06j+\x02\x00\x00K\x07j+\x02\x00\x00K\x08j+\x02\x00\x00K\tj+\x02\x00\x00K\nj+\x02\x00\x00K\x0b\x8c\x07none-16\x94K\x0c\x8c\x06none-9\x94K\rj,\x02\x00\x00K\x0ej,\x02\x00\x00K\x0fj,\x02\x00\x00K\x10j,\x02\x00\x00K\x11j,\x02\x00\x00K\x12j,\x02\x00\x00K\x13j,\x02\x00\x00K\x14j,\x02\x00\x00K\x15j,\x02\x00\x00K\x16j,\x02\x00\x00K\x17\x8c\x06none-2\x94K\x18\x8c\x07none-10\x94K\x19j-\x02\x00\x00K\x1aj-\x02\x00\x00K\x1bj-\x02\x00\x00K\x1cj-\x02\x00\x00K\x1dj-\x02\x00\x00K\x1ej-\x02\x00\x00K\x1fj-\x02\x00\x00K j-\x02\x00\x00K!j-\x02\x00\x00K"j-\x02\x00\x00K#\x8c\x06none-3\x94K$\x8c\x07none-11\x94K%j.\x02\x00\x00K&j.\x02\x00\x00K\'j.\x02\x00\x00K(j.\x02\x00\x00K)j.\x02\x00\x00K*j.\x02\x00\x00K+j.\x02\x00\x00K,j.\x02\x00\x00K-j.\x02\x00\x00K.j.\x02\x00\x00K/\x8c\x06none-4\x94K0\x8c\x07none-12\x94K1j/\x02\x00\x00K2j/\x02\x00\x00K3j/\x02\x00\x00K4j/\x02\x00\x00K5j/\x02\x00\x00K6j/\x02\x00\x00K7j/\x02\x00\x00K8j/\x02\x00\x00K9j/\x02\x00\x00K:j/\x02\x00\x00K;\x8c\x06none-5\x94K<\x8c\x07none-13\x94K=j0\x02\x00\x00K>j0\x02\x00\x00K?j0\x02\x00\x00K@j0\x02\x00\x00KAj0\x02\x00\x00KBj0\x02\x00\x00KCj0\x02\x00\x00KDj0\x02\x00\x00KEj0\x02\x00\x00KFj0\x02\x00\x00KG\x8c\x06none-6\x94KH\x8c\x07none-14\x94KIj1\x02\x00\x00KJj1\x02\x00\x00KKj1\x02\x00\x00KLj1\x02\x00\x00KMj1\x02\x00\x00KNj1\x02\x00\x00KOj1\x02\x00\x00KPj1\x02\x00\x00KQj1\x02\x00\x00KRj1\x02\x00\x00KS\x8c\x06none-7\x94KT\x8c\x07none-15\x94KUj2\x02\x00\x00KVj2\x02\x00\x00KWj2\x02\x00\x00KXj2\x02\x00\x00KYj2\x02\x00\x00KZj2\x02\x00\x00K[j2\x02\x00\x00K\\j2\x02\x00\x00K]j2\x02\x00\x00K^j2\x02\x00\x00K_\x8c\x06none-8\x94u\x8c\x0esample_noplate\x94}\x94(K\x00j\x9b\x02\x00\x00K\x01\x8c\rD10417d182_20\x94K\x02\x8c\rD10417d182_60\x94K\x03\x8c\x0eD10417d182_180\x94K\x04\x8c\x0eD10417d182_540\x94K\x05\x8c\x0fD10417d182_1620\x94K\x06\x8c\x0fD10417d182_4860\x94K\x07\x8c\x10D10417d182_14580\x94K\x08\x8c\x10D10417d182_43740\x94K\t\x8c\x11D10417d182_131220\x94K\n\x8c\x11D10417d182_393660\x94K\x0bj\x9c\x02\x00\x00K\x0cj\x9d\x02\x00\x00K\r\x8c\x0cD10417d30_20\x94K\x0e\x8c\x0cD10417d30_60\x94K\x0f\x8c\rD10417d30_180\x94K\x10\x8c\rD10417d30_540\x94K\x11\x8c\x0eD10417d30_1620\x94K\x12\x8c\x0eD10417d30_4860\x94K\x13\x8c\x0fD10417d30_14580\x94K\x14\x8c\x0fD10417d30_43740\x94K\x15\x8c\x10D10417d30_131220\x94K\x16\x8c\x10D10417d30_393660\x94K\x17j\x9e\x02\x00\x00K\x18j\x9f\x02\x00\x00K\x19\x8c\x0bD10417d0_20\x94K\x1a\x8c\x0bD10417d0_60\x94K\x1b\x8c\x0cD10417d0_180\x94K\x1c\x8c\x0cD10417d0_540\x94K\x1d\x8c\rD10417d0_1620\x94K\x1e\x8c\rD10417d0_4860\x94K\x1f\x8c\x0eD10417d0_14580\x94K \x8c\x0eD10417d0_43740\x94K!\x8c\x0fD10417d0_131220\x94K"\x8c\x0fD10417d0_393660\x94K#j\xa0\x02\x00\x00K$j\xa1\x02\x00\x00K%\x8c\rD10181d182_20\x94K&\x8c\rD10181d182_60\x94K\'\x8c\x0eD10181d182_180\x94K(\x8c\x0eD10181d182_540\x94K)\x8c\x0fD10181d182_1620\x94K*\x8c\x0fD10181d182_4860\x94K+\x8c\x10D10181d182_14580\x94K,\x8c\x10D10181d182_43740\x94K-\x8c\x11D10181d182_131220\x94K.\x8c\x11D10181d182_393660\x94K/j\xa2\x02\x00\x00K0j\xa3\x02\x00\x00K1\x8c\x0cD10181d30_20\x94K2\x8c\x0cD10181d30_60\x94K3\x8c\rD10181d30_180\x94K4\x8c\rD10181d30_540\x94K5\x8c\x0eD10181d30_1620\x94K6\x8c\x0eD10181d30_4860\x94K7\x8c\x0fD10181d30_14580\x94K8\x8c\x0fD10181d30_43740\x94K9\x8c\x10D10181d30_131220\x94K:\x8c\x10D10181d30_393660\x94K;j\xa4\x02\x00\x00K<j\xa5\x02\x00\x00K=\x8c\x0bD10181d0_20\x94K>\x8c\x0bD10181d0_60\x94K?\x8c\x0cD10181d0_180\x94K@\x8c\x0cD10181d0_540\x94KA\x8c\rD10181d0_1620\x94KB\x8c\rD10181d0_4860\x94KC\x8c\x0eD10181d0_14580\x94KD\x8c\x0eD10181d0_43740\x94KE\x8c\x0fD10181d0_131220\x94KF\x8c\x0fD10181d0_393660\x94KGj\xa6\x02\x00\x00KHj\xa7\x02\x00\x00KI\x8c\x0cD10291d30_20\x94KJ\x8c\x0cD10291d30_60\x94KK\x8c\rD10291d30_180\x94KL\x8c\rD10291d30_540\x94KM\x8c\x0eD10291d30_1620\x94KN\x8c\x0eD10291d30_4860\x94KO\x8c\x0fD10291d30_14580\x94KP\x8c\x0fD10291d30_43740\x94KQ\x8c\x10D10291d30_131220\x94KR\x8c\x10D10291d30_393660\x94KSj\xa8\x02\x00\x00KTj\xa9\x02\x00\x00KU\x8c\x0bD10291d0_20\x94KV\x8c\x0bD10291d0_60\x94KW\x8c\x0cD10291d0_180\x94KX\x8c\x0cD10291d0_540\x94KY\x8c\rD10291d0_1620\x94KZ\x8c\rD10291d0_4860\x94K[\x8c\x0eD10291d0_14580\x94K\\\x8c\x0eD10291d0_43740\x94K]\x8c\x0fD10291d0_131220\x94K^\x8c\x0fD10291d0_393660\x94K_j\xaa\x02\x00\x00u\x8c\x06sample\x94}\x94(K\x00j#\x01\x00\x00K\x01j$\x01\x00\x00K\x02j%\x01\x00\x00K\x03j&\x01\x00\x00K\x04j\'\x01\x00\x00K\x05j(\x01\x00\x00K\x06j)\x01\x00\x00K\x07j*\x01\x00\x00K\x08j+\x01\x00\x00K\tj,\x01\x00\x00K\nj-\x01\x00\x00K\x0bj.\x01\x00\x00K\x0cj/\x01\x00\x00K\rj0\x01\x00\x00K\x0ej1\x01\x00\x00K\x0fj2\x01\x00\x00K\x10j3\x01\x00\x00K\x11j4\x01\x00\x00K\x12j5\x01\x00\x00K\x13j6\x01\x00\x00K\x14j7\x01\x00\x00K\x15j8\x01\x00\x00K\x16j9\x01\x00\x00K\x17j:\x01\x00\x00K\x18j;\x01\x00\x00K\x19j<\x01\x00\x00K\x1aj=\x01\x00\x00K\x1bj>\x01\x00\x00K\x1cj?\x01\x00\x00K\x1dj@\x01\x00\x00K\x1ejA\x01\x00\x00K\x1fjB\x01\x00\x00K jC\x01\x00\x00K!jD\x01\x00\x00K"jE\x01\x00\x00K#jF\x01\x00\x00K$jG\x01\x00\x00K%jH\x01\x00\x00K&jI\x01\x00\x00K\'jJ\x01\x00\x00K(jK\x01\x00\x00K)jL\x01\x00\x00K*jM\x01\x00\x00K+jN\x01\x00\x00K,jO\x01\x00\x00K-jP\x01\x00\x00K.jQ\x01\x00\x00K/jR\x01\x00\x00K0jS\x01\x00\x00K1jT\x01\x00\x00K2jU\x01\x00\x00K3jV\x01\x00\x00K4jW\x01\x00\x00K5jX\x01\x00\x00K6jY\x01\x00\x00K7jZ\x01\x00\x00K8j[\x01\x00\x00K9j\\\x01\x00\x00K:j]\x01\x00\x00K;j^\x01\x00\x00K<j_\x01\x00\x00K=j`\x01\x00\x00K>ja\x01\x00\x00K?jb\x01\x00\x00K@jc\x01\x00\x00KAjd\x01\x00\x00KBje\x01\x00\x00KCjf\x01\x00\x00KDjg\x01\x00\x00KEjh\x01\x00\x00KFji\x01\x00\x00KGjj\x01\x00\x00KHjk\x01\x00\x00KIjl\x01\x00\x00KJjm\x01\x00\x00KKjn\x01\x00\x00KLjo\x01\x00\x00KMjp\x01\x00\x00KNjq\x01\x00\x00KOjr\x01\x00\x00KPjs\x01\x00\x00KQjt\x01\x00\x00KRju\x01\x00\x00KSjv\x01\x00\x00KTjw\x01\x00\x00KUjx\x01\x00\x00KVjy\x01\x00\x00KWjz\x01\x00\x00KXj{\x01\x00\x00KYj|\x01\x00\x00KZj}\x01\x00\x00K[j~\x01\x00\x00K\\j\x7f\x01\x00\x00K]j\x80\x01\x00\x00K^j\x81\x01\x00\x00K_j\x82\x01\x00\x00u\x8c\x05plate\x94}\x94(K\x00\x8c\x06plate9\x94K\x01j\x01\x03\x00\x00K\x02j\x01\x03\x00\x00K\x03j\x01\x03\x00\x00K\x04j\x01\x03\x00\x00K\x05j\x01\x03\x00\x00K\x06j\x01\x03\x00\x00K\x07j\x01\x03\x00\x00K\x08j\x01\x03\x00\x00K\tj\x01\x03\x00\x00K\nj\x01\x03\x00\x00K\x0bj\x01\x03\x00\x00K\x0cj\x01\x03\x00\x00K\rj\x01\x03\x00\x00K\x0ej\x01\x03\x00\x00K\x0fj\x01\x03\x00\x00K\x10j\x01\x03\x00\x00K\x11j\x01\x03\x00\x00K\x12j\x01\x03\x00\x00K\x13j\x01\x03\x00\x00K\x14j\x01\x03\x00\x00K\x15j\x01\x03\x00\x00K\x16j\x01\x03\x00\x00K\x17j\x01\x03\x00\x00K\x18j\x01\x03\x00\x00K\x19j\x01\x03\x00\x00K\x1aj\x01\x03\x00\x00K\x1bj\x01\x03\x00\x00K\x1cj\x01\x03\x00\x00K\x1dj\x01\x03\x00\x00K\x1ej\x01\x03\x00\x00K\x1fj\x01\x03\x00\x00K j\x01\x03\x00\x00K!j\x01\x03\x00\x00K"j\x01\x03\x00\x00K#j\x01\x03\x00\x00K$j\x01\x03\x00\x00K%j\x01\x03\x00\x00K&j\x01\x03\x00\x00K\'j\x01\x03\x00\x00K(j\x01\x03\x00\x00K)j\x01\x03\x00\x00K*j\x01\x03\x00\x00K+j\x01\x03\x00\x00K,j\x01\x03\x00\x00K-j\x01\x03\x00\x00K.j\x01\x03\x00\x00K/j\x01\x03\x00\x00K0j\x01\x03\x00\x00K1j\x01\x03\x00\x00K2j\x01\x03\x00\x00K3j\x01\x03\x00\x00K4j\x01\x03\x00\x00K5j\x01\x03\x00\x00K6j\x01\x03\x00\x00K7j\x01\x03\x00\x00K8j\x01\x03\x00\x00K9j\x01\x03\x00\x00K:j\x01\x03\x00\x00K;j\x01\x03\x00\x00K<j\x01\x03\x00\x00K=j\x01\x03\x00\x00K>j\x01\x03\x00\x00K?j\x01\x03\x00\x00K@j\x01\x03\x00\x00KAj\x01\x03\x00\x00KBj\x01\x03\x00\x00KCj\x01\x03\x00\x00KDj\x01\x03\x00\x00KEj\x01\x03\x00\x00KFj\x01\x03\x00\x00KGj\x01\x03\x00\x00KHj\x01\x03\x00\x00KIj\x01\x03\x00\x00KJj\x01\x03\x00\x00KKj\x01\x03\x00\x00KLj\x01\x03\x00\x00KMj\x01\x03\x00\x00KNj\x01\x03\x00\x00KOj\x01\x03\x00\x00KPj\x01\x03\x00\x00KQj\x01\x03\x00\x00KRj\x01\x03\x00\x00KSj\x01\x03\x00\x00KTj\x01\x03\x00\x00KUj\x01\x03\x00\x00KVj\x01\x03\x00\x00KWj\x01\x03\x00\x00KXj\x01\x03\x00\x00KYj\x01\x03\x00\x00KZj\x01\x03\x00\x00K[j\x01\x03\x00\x00K\\j\x01\x03\x00\x00K]j\x01\x03\x00\x00K^j\x01\x03\x00\x00K_j\x01\x03\x00\x00u\x8c\x0fplate_replicate\x94}\x94(K\x00\x8c\x08plate9-1\x94K\x01j\x01\x03\x00\x00K\x02j\x01\x03\x00\x00K\x03j\x01\x03\x00\x00K\x04j\x01\x03\x00\x00K\x05j\x01\x03\x00\x00K\x06j\x01\x03\x00\x00K\x07j\x01\x03\x00\x00K\x08j\x01\x03\x00\x00K\tj\x01\x03\x00\x00K\nj\x01\x03\x00\x00K\x0b\x8c\tplate9-16\x94K\x0c\x8c\x08plate9-9\x94K\rj\x01\x03\x00\x00K\x0ej\x01\x03\x00\x00K\x0fj\x01\x03\x00\x00K\x10j\x01\x03\x00\x00K\x11j\x01\x03\x00\x00K\x12j\x01\x03\x00\x00K\x13j\x01\x03\x00\x00K\x14j\x01\x03\x00\x00K\x15j\x01\x03\x00\x00K\x16j\x01\x03\x00\x00K\x17\x8c\x08plate9-2\x94K\x18\x8c\tplate9-10\x94K\x19j\x01\x03\x00\x00K\x1aj\x01\x03\x00\x00K\x1bj\x01\x03\x00\x00K\x1cj\x01\x03\x00\x00K\x1dj\x01\x03\x00\x00K\x1ej\x01\x03\x00\x00K\x1fj\x01\x03\x00\x00K j\x01\x03\x00\x00K!j\x01\x03\x00\x00K"j\x01\x03\x00\x00K#\x8c\x08plate9-3\x94K$\x8c\tplate9-11\x94K%j\x01\x03\x00\x00K&j\x01\x03\x00\x00K\'j\x01\x03\x00\x00K(j\x01\x03\x00\x00K)j\x01\x03\x00\x00K*j\x01\x03\x00\x00K+j\x01\x03\x00\x00K,j\x01\x03\x00\x00K-j\x01\x03\x00\x00K.j\x01\x03\x00\x00K/\x8c\x08plate9-4\x94K0\x8c\tplate9-12\x94K1j\x01\x03\x00\x00K2j\x01\x03\x00\x00K3j\x01\x03\x00\x00K4j\x01\x03\x00\x00K5j\x01\x03\x00\x00K6j\x01\x03\x00\x00K7j\x01\x03\x00\x00K8j\x01\x03\x00\x00K9j\x01\x03\x00\x00K:j\x01\x03\x00\x00K;\x8c\x08plate9-5\x94K<\x8c\tplate9-13\x94K=j\x01\x03\x00\x00K>j\x01\x03\x00\x00K?j\x01\x03\x00\x00K@j\x01\x03\x00\x00KAj\x01\x03\x00\x00KBj\x01\x03\x00\x00KCj\x01\x03\x00\x00KDj\x01\x03\x00\x00KEj\x01\x03\x00\x00KFj\x01\x03\x00\x00KG\x8c\x08plate9-6\x94KH\x8c\tplate9-14\x94KIj\x01\x03\x00\x00KJj\x01\x03\x00\x00KKj\x01\x03\x00\x00KLj\x01\x03\x00\x00KMj\x01\x03\x00\x00KNj\x01\x03\x00\x00KOj\x01\x03\x00\x00KPj\x01\x03\x00\x00KQj\x01\x03\x00\x00KRj\x01\x03\x00\x00KS\x8c\x08plate9-7\x94KT\x8c\tplate9-15\x94KUj\x01\x03\x00\x00KVj\x01\x03\x00\x00KWj\x01\x03\x00\x00KXj\x01\x03\x00\x00KYj\x01\x03\x00\x00KZj\x01\x03\x00\x00K[j\x01\x03\x00\x00K\\j\x01\x03\x00\x00K]j\x01\x03\x00\x00K^j\x01\x03\x00\x00K_\x8c\x08plate9-8\x94uuue}\x94(h\xcd}\x94(j\xc4\x01\x00\x00K\x00N\x86\x94\x8c\x0cplate_params\x94K\x01N\x86\x94uh\xd7]\x94(h\xd9h\xdaeh\xd9h\xddh\xdf\x85\x94R\x94(h\xdf)}\x94h\xe3h\xd9sNt\x94bh\xdah\xddh\xdf\x85\x94R\x94(h\xdf)}\x94h\xe3h\xdasNt\x94bj\xc4\x01\x00\x00j"\x01\x00\x00j\x17\x03\x00\x00j\x83\x01\x00\x00ub\x8c\twildcards\x94h\x06\x8c\tWildcards\x94\x93\x94)\x81\x94\x8c\x06plate9\x94a}\x94(h\xcd}\x94\x8c\x05plate\x94K\x00N\x86\x94sh\xd7]\x94(h\xd9h\xdaeh\xd9h\xddh\xdf\x85\x94R\x94(h\xdf)}\x94h\xe3h\xd9sNt\x94bh\xdah\xddh\xdf\x85\x94R\x94(h\xdf)}\x94h\xe3h\xdasNt\x94bj\xff\x02\x00\x00j&\x03\x00\x00ub\x8c\x07threads\x94K\x01\x8c\tresources\x94h\x06\x8c\tResources\x94\x93\x94)\x81\x94(K\x01K\x01\x8c\x15/loc/scratch/58619952\x94e}\x94(h\xcd}\x94(\x8c\x06_cores\x94K\x00N\x86\x94\x8c\x06_nodes\x94K\x01N\x86\x94\x8c\x06tmpdir\x94K\x02N\x86\x94uh\xd7]\x94(h\xd9h\xdaeh\xd9h\xddh\xdf\x85\x94R\x94(h\xdf)}\x94h\xe3h\xd9sNt\x94bh\xdah\xddh\xdf\x85\x94R\x94(h\xdf)}\x94h\xe3h\xdasNt\x94bj<\x03\x00\x00K\x01j>\x03\x00\x00K\x01j@\x03\x00\x00j9\x03\x00\x00ub\x8c\x03log\x94h\x06\x8c\x03Log\x94\x93\x94)\x81\x94\x8c*results/plates/plate9/process_plate9.ipynb\x94a}\x94(h\xcd}\x94\x8c\x08notebook\x94K\x00N\x86\x94sh\xd7]\x94(h\xd9h\xdaeh\xd9h\xddh\xdf\x85\x94R\x94(h\xdf)}\x94h\xe3h\xd9sNt\x94bh\xdah\xddh\xdf\x85\x94R\x94(h\xdf)}\x94h\xe3h\xdasNt\x94bjR\x03\x00\x00jO\x03\x00\x00ub\x8c\x06config\x94}\x94(\x8c\x10seqneut-pipeline\x94\x8c\x10seqneut-pipeline\x94\x8c\x04docs\x94\x8c\x04docs\x94\x8c\x0bdescription\x94X\xfa\x01\x00\x00# Sequencing-based neutralization assays of 2021-2022 DRIVE samples versus H1N1 influenza libraries\nStudy by Loes et al of samples from the DRIVE cohort using sequencing-based neutralization assay developed in the Bloom lab.\n\nSee [Loes et al (2024)](https://doi.org/10.1101/2024.03.08.584176) for the citation for this study.\n\nThe numerical data and computer code are at [https://github.com/jbloomlab/flu_seqneut_DRIVE_2021-22_repeat_vax](https://github.com/jbloomlab/flu_seqneut_DRIVE_2021-22_repeat_vax)\n\x94\x8c\x0fviral_libraries\x94}\x94\x8c\x14pdmH1N1_lib2023_loes\x94\x8c-data/viral_libraries/pdmH1N1_lib2023_loes.csv\x94s\x8c\x0finitial_pooling\x94\x8c4data/initialpool/2022_pdmH1N1library_initialPool.csv\x94\x8c\x17viral_strain_plot_order\x94\x8c data/viral_strain_plot_order.csv\x94\x8c\x12neut_standard_sets\x94}\x94\x8c\x08loes2023\x94\x8c3data/neut_standard_sets/loes2023_neut_standards.csv\x94s\x8c\x1eillumina_barcode_parser_params\x94}\x94(j\xbc\x01\x00\x00j\xbd\x01\x00\x00j\xbe\x01\x00\x00j\xbf\x01\x00\x00j\xc0\x01\x00\x00K\x14j\xc1\x01\x00\x00K\x04j\xc2\x01\x00\x00j\xc3\x01\x00\x00u\x8c#default_process_plate_qc_thresholds\x94}\x94(j\x97\x01\x00\x00M\xe8\x03j\x98\x01\x00\x00G?tz\xe1G\xae\x14{j\x99\x01\x00\x00}\x94(j\x9b\x01\x00\x00G?@bM\xd2\xf1\xa9\xfcj\x9c\x01\x00\x00K\x04j\x9d\x01\x00\x00K\x02uj\x9e\x01\x00\x00}\x94(j\xa0\x01\x00\x00G?tz\xe1G\xae\x14{j\xa1\x01\x00\x00K\x04j\xa2\x01\x00\x00K\x02uj\xa3\x01\x00\x00M\xe8\x03j\xa4\x01\x00\x00M\xf4\x01j\xa5\x01\x00\x00K\x05j\xa6\x01\x00\x00K\x06u\x8c%default_process_plate_curvefit_params\x94}\x94(j\xa9\x01\x00\x00K\x01j\xaa\x01\x00\x00]\x94(G?\xe0\x00\x00\x00\x00\x00\x00K\x01ej\xac\x01\x00\x00K\x00j\xad\x01\x00\x00]\x94(G?\xe9\x99\x99\x99\x99\x99\x9aK\neu\x8c!default_process_plate_curvefit_qc\x94}\x94(j\xb1\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xb2\x01\x00\x00}\x94(j\xb4\x01\x00\x00G?\xe3333333j\xb5\x01\x00\x00G?\xb9\x99\x99\x99\x99\x99\x9auj\xb6\x01\x00\x00]\x94j\xb8\x01\x00\x00]\x94u\x8c\x06plates\x94}\x94(\x8c\x06plate1\x94}\x94(\x8c\x05group\x94\x8c\x05DRIVE\x94\x8c\x04date\x94\x8c\x08datetime\x94\x8c\x04date\x94\x93\x94C\x04\x07\xe7\x08\x01\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x14pdmH1N1_lib2023_loes\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c\x1edata/plates/plate1_samples.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x97\x01\x00\x00M\xe8\x03j\x98\x01\x00\x00G?tz\xe1G\xae\x14{j\x99\x01\x00\x00}\x94(j\x9b\x01\x00\x00G?@bM\xd2\xf1\xa9\xfcj\x9c\x01\x00\x00K\x04j\x9d\x01\x00\x00K\x02uj\x9e\x01\x00\x00}\x94(j\xa0\x01\x00\x00G?tz\xe1G\xae\x14{j\xa1\x01\x00\x00K\x04j\xa2\x01\x00\x00K\x02uj\xa3\x01\x00\x00M\xe8\x03j\xa4\x01\x00\x00M\xf4\x01j\xa5\x01\x00\x00K\x05j\xa6\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\xa9\x01\x00\x00K\x01j\xaa\x01\x00\x00jy\x03\x00\x00j\xac\x01\x00\x00K\x00j\xad\x01\x00\x00jz\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\xb1\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xb2\x01\x00\x00}\x94(j\xb4\x01\x00\x00G?\xe3333333j\xb5\x01\x00\x00G?\xb9\x99\x99\x99\x99\x99\x9auj\xb6\x01\x00\x00j~\x03\x00\x00j\xb8\x01\x00\x00j\x7f\x03\x00\x00uu\x8c\x06plate2\x94}\x94(\x8c\x05group\x94\x8c\x05DRIVE\x94\x8c\x04date\x94j\x89\x03\x00\x00C\x04\x07\xe7\x08\x01\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x14pdmH1N1_lib2023_loes\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c\x1edata/plates/plate2_samples.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x97\x01\x00\x00M\xe8\x03j\x98\x01\x00\x00G?tz\xe1G\xae\x14{j\x99\x01\x00\x00}\x94(j\x9b\x01\x00\x00G?@bM\xd2\xf1\xa9\xfcj\x9c\x01\x00\x00K\x04j\x9d\x01\x00\x00K\x02uj\x9e\x01\x00\x00}\x94(j\xa0\x01\x00\x00G?tz\xe1G\xae\x14{j\xa1\x01\x00\x00K\x04j\xa2\x01\x00\x00K\x02uj\xa3\x01\x00\x00M\xe8\x03j\xa4\x01\x00\x00M\xf4\x01j\xa5\x01\x00\x00K\x05j\xa6\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\xa9\x01\x00\x00K\x01j\xaa\x01\x00\x00jy\x03\x00\x00j\xac\x01\x00\x00K\x00j\xad\x01\x00\x00jz\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\xb1\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xb2\x01\x00\x00}\x94(j\xb4\x01\x00\x00G?\xe3333333j\xb5\x01\x00\x00G?\xb9\x99\x99\x99\x99\x99\x9auj\xb6\x01\x00\x00j~\x03\x00\x00j\xb8\x01\x00\x00j\x7f\x03\x00\x00uu\x8c\x06plate3\x94}\x94(\x8c\x05group\x94\x8c\x05DRIVE\x94\x8c\x04date\x94j\x89\x03\x00\x00C\x04\x07\xe7\x08\x02\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x14pdmH1N1_lib2023_loes\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c\x1edata/plates/plate3_samples.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x97\x01\x00\x00M\xe8\x03j\x98\x01\x00\x00G?tz\xe1G\xae\x14{j\x99\x01\x00\x00}\x94(j\x9b\x01\x00\x00G?@bM\xd2\xf1\xa9\xfcj\x9c\x01\x00\x00K\x04j\x9d\x01\x00\x00K\x02uj\x9e\x01\x00\x00}\x94(j\xa0\x01\x00\x00G?tz\xe1G\xae\x14{j\xa1\x01\x00\x00K\x04j\xa2\x01\x00\x00K\x02uj\xa3\x01\x00\x00M\xe8\x03j\xa4\x01\x00\x00M\xf4\x01j\xa5\x01\x00\x00K\x05j\xa6\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\xa9\x01\x00\x00K\x01j\xaa\x01\x00\x00jy\x03\x00\x00j\xac\x01\x00\x00K\x00j\xad\x01\x00\x00jz\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\xb1\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xb2\x01\x00\x00}\x94(j\xb4\x01\x00\x00G?\xe3333333j\xb5\x01\x00\x00G?\xb9\x99\x99\x99\x99\x99\x9auj\xb6\x01\x00\x00j~\x03\x00\x00j\xb8\x01\x00\x00j\x7f\x03\x00\x00uu\x8c\x06plate4\x94}\x94(\x8c\x05group\x94\x8c\x05DRIVE\x94\x8c\x04date\x94j\x89\x03\x00\x00C\x04\x07\xe7\x08\x02\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x14pdmH1N1_lib2023_loes\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c\x1edata/plates/plate4_samples.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x97\x01\x00\x00M\xe8\x03j\x98\x01\x00\x00G?tz\xe1G\xae\x14{j\x99\x01\x00\x00}\x94(j\x9b\x01\x00\x00G?@bM\xd2\xf1\xa9\xfcj\x9c\x01\x00\x00K\x04j\x9d\x01\x00\x00K\x02uj\x9e\x01\x00\x00}\x94(j\xa0\x01\x00\x00G?tz\xe1G\xae\x14{j\xa1\x01\x00\x00K\x04j\xa2\x01\x00\x00K\x02uj\xa3\x01\x00\x00M\xe8\x03j\xa4\x01\x00\x00M\xf4\x01j\xa5\x01\x00\x00K\x05j\xa6\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\xa9\x01\x00\x00K\x01j\xaa\x01\x00\x00jy\x03\x00\x00j\xac\x01\x00\x00K\x00j\xad\x01\x00\x00jz\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\xb1\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xb2\x01\x00\x00}\x94(j\xb4\x01\x00\x00G?\xe3333333j\xb5\x01\x00\x00G?\xb9\x99\x99\x99\x99\x99\x9auj\xb6\x01\x00\x00j~\x03\x00\x00j\xb8\x01\x00\x00j\x7f\x03\x00\x00uu\x8c\x06plate5\x94}\x94(\x8c\x05group\x94\x8c\x05DRIVE\x94\x8c\x04date\x94j\x89\x03\x00\x00C\x04\x07\xe7\x08\x04\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x14pdmH1N1_lib2023_loes\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c\x1edata/plates/plate5_samples.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\x18barcode_serum_replicates\x94]\x94]\x94(\x8c\x10TCTGTTCCGGCCCGAA\x94\x8c\nD10042d182\x94eas\x8c\rqc_thresholds\x94}\x94(j\x97\x01\x00\x00M\xe8\x03j\x98\x01\x00\x00G?tz\xe1G\xae\x14{j\x99\x01\x00\x00}\x94(j\x9b\x01\x00\x00G?@bM\xd2\xf1\xa9\xfcj\x9c\x01\x00\x00K\x04j\x9d\x01\x00\x00K\x02uj\x9e\x01\x00\x00}\x94(j\xa0\x01\x00\x00G?tz\xe1G\xae\x14{j\xa1\x01\x00\x00K\x04j\xa2\x01\x00\x00K\x02uj\xa3\x01\x00\x00M\xe8\x03j\xa4\x01\x00\x00M\xf4\x01j\xa5\x01\x00\x00K\x05j\xa6\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\xa9\x01\x00\x00K\x01j\xaa\x01\x00\x00jy\x03\x00\x00j\xac\x01\x00\x00K\x00j\xad\x01\x00\x00jz\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\xb1\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xb2\x01\x00\x00}\x94(j\xb4\x01\x00\x00G?\xe3333333j\xb5\x01\x00\x00G?\xb9\x99\x99\x99\x99\x99\x9auj\xb6\x01\x00\x00j~\x03\x00\x00j\xb8\x01\x00\x00j\x7f\x03\x00\x00uu\x8c\x06plate6\x94}\x94(\x8c\x05group\x94\x8c\x05DRIVE\x94\x8c\x04date\x94j\x89\x03\x00\x00C\x04\x07\xe7\x08\x04\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x14pdmH1N1_lib2023_loes\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c\x1edata/plates/plate6_samples.csv\x94\x8c\x0cmanual_drops\x94}\x94(\x8c\rbarcode_wells\x94]\x94]\x94(\x8c\x10TAATGAGCTTTATGGT\x94\x8c\x02F5\x94ea\x8c\x18barcode_serum_replicates\x94]\x94]\x94(\x8c\x10ACGACATGATCAAACG\x94\x8c\nD10212d182\x94eau\x8c\rqc_thresholds\x94}\x94(j\x97\x01\x00\x00M\xe8\x03j\x98\x01\x00\x00G?tz\xe1G\xae\x14{j\x99\x01\x00\x00}\x94(j\x9b\x01\x00\x00G?@bM\xd2\xf1\xa9\xfcj\x9c\x01\x00\x00K\x04j\x9d\x01\x00\x00K\x02uj\x9e\x01\x00\x00}\x94(j\xa0\x01\x00\x00G?tz\xe1G\xae\x14{j\xa1\x01\x00\x00K\x04j\xa2\x01\x00\x00K\x02uj\xa3\x01\x00\x00M\xe8\x03j\xa4\x01\x00\x00M\xf4\x01j\xa5\x01\x00\x00K\x05j\xa6\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\xa9\x01\x00\x00K\x01j\xaa\x01\x00\x00jy\x03\x00\x00j\xac\x01\x00\x00K\x00j\xad\x01\x00\x00jz\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\xb1\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xb2\x01\x00\x00}\x94(j\xb4\x01\x00\x00G?\xe3333333j\xb5\x01\x00\x00G?\xb9\x99\x99\x99\x99\x99\x9auj\xb6\x01\x00\x00j~\x03\x00\x00j\xb8\x01\x00\x00j\x7f\x03\x00\x00uu\x8c\x06plate7\x94}\x94(\x8c\x05group\x94\x8c\x05DRIVE\x94\x8c\x04date\x94j\x89\x03\x00\x00C\x04\x07\xe7\x08\x05\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x14pdmH1N1_lib2023_loes\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c\x1edata/plates/plate7_samples.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x97\x01\x00\x00M\xe8\x03j\x98\x01\x00\x00G?tz\xe1G\xae\x14{j\x99\x01\x00\x00}\x94(j\x9b\x01\x00\x00G?@bM\xd2\xf1\xa9\xfcj\x9c\x01\x00\x00K\x04j\x9d\x01\x00\x00K\x02uj\x9e\x01\x00\x00}\x94(j\xa0\x01\x00\x00G?tz\xe1G\xae\x14{j\xa1\x01\x00\x00K\x04j\xa2\x01\x00\x00K\x02uj\xa3\x01\x00\x00M\xe8\x03j\xa4\x01\x00\x00M\xf4\x01j\xa5\x01\x00\x00K\x05j\xa6\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\xa9\x01\x00\x00K\x01j\xaa\x01\x00\x00jy\x03\x00\x00j\xac\x01\x00\x00K\x00j\xad\x01\x00\x00jz\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\xb1\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xb2\x01\x00\x00}\x94(j\xb4\x01\x00\x00G?\xe3333333j\xb5\x01\x00\x00G?\xb9\x99\x99\x99\x99\x99\x9auj\xb6\x01\x00\x00j~\x03\x00\x00j\xb8\x01\x00\x00j\x7f\x03\x00\x00uu\x8c\x06plate8\x94}\x94(\x8c\x05group\x94\x8c\x05DRIVE\x94\x8c\x04date\x94j\x89\x03\x00\x00C\x04\x07\xe7\x08\x05\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x14pdmH1N1_lib2023_loes\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c\x1edata/plates/plate8_samples.csv\x94\x8c\x0cmanual_drops\x94}\x94(\x8c\rbarcode_wells\x94]\x94(]\x94(\x8c\x10TAGTATAATAGAGCAG\x94\x8c\x02D5\x94e]\x94(\x8c\x10CAGTTCTGCGACCAGC\x94\x8c\x02D9\x94ee\x8c\x18barcode_serum_replicates\x94]\x94(]\x94(\x8c\x10ACGGAATCCCCTGAGA\x94\x8c\x08D10396d0\x94e]\x94(\x8c\x10GGATAAGAAAACTACT\x94\x8c\x08D10396d0\x94e]\x94(\x8c\x10GTAACATTATACGATT\x94\x8c\x08D10396d0\x94e]\x94(\x8c\x10GACTCAATAATCACAC\x94\x8c\x08D10396d0\x94e]\x94(\x8c\x10CTATTAATCATGCAAA\x94\x8c\x08D10396d0\x94e]\x94(\x8c\x10TGGAATCGTCACCGAT\x94\x8c\tD10396d30\x94eeu\x8c\rqc_thresholds\x94}\x94(j\x97\x01\x00\x00M\xe8\x03j\x98\x01\x00\x00G?tz\xe1G\xae\x14{j\x99\x01\x00\x00}\x94(j\x9b\x01\x00\x00G?@bM\xd2\xf1\xa9\xfcj\x9c\x01\x00\x00K\x04j\x9d\x01\x00\x00K\x02uj\x9e\x01\x00\x00}\x94(j\xa0\x01\x00\x00G?tz\xe1G\xae\x14{j\xa1\x01\x00\x00K\x04j\xa2\x01\x00\x00K\x02uj\xa3\x01\x00\x00M\xe8\x03j\xa4\x01\x00\x00M\xf4\x01j\xa5\x01\x00\x00K\x05j\xa6\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\xa9\x01\x00\x00K\x01j\xaa\x01\x00\x00jy\x03\x00\x00j\xac\x01\x00\x00K\x00j\xad\x01\x00\x00jz\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\xb1\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xb2\x01\x00\x00}\x94(j\xb4\x01\x00\x00G?\xe3333333j\xb5\x01\x00\x00G?\xb9\x99\x99\x99\x99\x99\x9auj\xb6\x01\x00\x00j~\x03\x00\x00j\xb8\x01\x00\x00j\x7f\x03\x00\x00uuj\x01\x03\x00\x00}\x94(j\x84\x01\x00\x00j\x85\x01\x00\x00j\x86\x01\x00\x00j\x89\x03\x00\x00C\x04\x07\xe7\x08\x05\x94\x85\x94R\x94j\x88\x01\x00\x00j\x89\x01\x00\x00j\x8a\x01\x00\x00j\x8b\x01\x00\x00j\x8c\x01\x00\x00j\x8d\x01\x00\x00j\x8e\x01\x00\x00}\x94j\x90\x01\x00\x00]\x94]\x94(j\x93\x01\x00\x00j\x94\x01\x00\x00easj\x95\x01\x00\x00}\x94(j\x97\x01\x00\x00M\xe8\x03j\x98\x01\x00\x00G?tz\xe1G\xae\x14{j\x99\x01\x00\x00}\x94(j\x9b\x01\x00\x00G?@bM\xd2\xf1\xa9\xfcj\x9c\x01\x00\x00K\x04j\x9d\x01\x00\x00K\x02uj\x9e\x01\x00\x00}\x94(j\xa0\x01\x00\x00G?tz\xe1G\xae\x14{j\xa1\x01\x00\x00K\x04j\xa2\x01\x00\x00K\x02uj\xa3\x01\x00\x00M\xe8\x03j\xa4\x01\x00\x00M\xf4\x01j\xa5\x01\x00\x00K\x05j\xa6\x01\x00\x00K\x06uj\xa7\x01\x00\x00}\x94(j\xa9\x01\x00\x00K\x01j\xaa\x01\x00\x00jy\x03\x00\x00j\xac\x01\x00\x00K\x00j\xad\x01\x00\x00jz\x03\x00\x00uj\xaf\x01\x00\x00}\x94(j\xb1\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xb2\x01\x00\x00}\x94(j\xb4\x01\x00\x00G?\xe3333333j\xb5\x01\x00\x00G?\xb9\x99\x99\x99\x99\x99\x9auj\xb6\x01\x00\x00j~\x03\x00\x00j\xb8\x01\x00\x00j\x7f\x03\x00\x00uu\x8c\x07plate10\x94}\x94(\x8c\x05group\x94\x8c\x05DRIVE\x94\x8c\x04date\x94j\x89\x03\x00\x00C\x04\x07\xe7\x08\x06\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x14pdmH1N1_lib2023_loes\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c\x1fdata/plates/plate10_samples.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\x18barcode_serum_replicates\x94]\x94(]\x94(\x8c\x10CGGATAAAAATGATAT\x94\x8c\tD10041d30\x94e]\x94(\x8c\x10GTTTGACAATCACTAC\x94\x8c\tD10041d30\x94e]\x94(\x8c\x10AGCAGCCTGAAAATAT\x94\x8c\tD10175d30\x94e]\x94(\x8c\x10GACTCAATAATCACAC\x94\x8c\nD10175d182\x94ees\x8c\rqc_thresholds\x94}\x94(j\x97\x01\x00\x00M\xe8\x03j\x98\x01\x00\x00G?tz\xe1G\xae\x14{j\x99\x01\x00\x00}\x94(j\x9b\x01\x00\x00G?@bM\xd2\xf1\xa9\xfcj\x9c\x01\x00\x00K\x04j\x9d\x01\x00\x00K\x02uj\x9e\x01\x00\x00}\x94(j\xa0\x01\x00\x00G?tz\xe1G\xae\x14{j\xa1\x01\x00\x00K\x04j\xa2\x01\x00\x00K\x02uj\xa3\x01\x00\x00M\xe8\x03j\xa4\x01\x00\x00M\xf4\x01j\xa5\x01\x00\x00K\x05j\xa6\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\xa9\x01\x00\x00K\x01j\xaa\x01\x00\x00jy\x03\x00\x00j\xac\x01\x00\x00K\x00j\xad\x01\x00\x00jz\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\xb1\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xb2\x01\x00\x00}\x94(j\xb4\x01\x00\x00G?\xe3333333j\xb5\x01\x00\x00G?\xb9\x99\x99\x99\x99\x99\x9auj\xb6\x01\x00\x00j~\x03\x00\x00j\xb8\x01\x00\x00j\x7f\x03\x00\x00uu\x8c\x07plate11\x94}\x94(\x8c\x05group\x94\x8c\x05DRIVE\x94\x8c\x04date\x94j\x89\x03\x00\x00C\x04\x07\xe7\t\x1a\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x14pdmH1N1_lib2023_loes\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c\x1fdata/plates/plate11_samples.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\x18barcode_serum_replicates\x94]\x94(]\x94(\x8c\x10ACGGAATCCCCTGAGA\x94\x8c\tD10041d30\x94e]\x94(\x8c\x10GATCCGTACTTTGATT\x94\x8c\x08D10256d0\x94e]\x94(\x8c\x10CATCAACCGCCATTTC\x94\x8c\x08D10256d0\x94ees\x8c\rqc_thresholds\x94}\x94(j\x97\x01\x00\x00M\xe8\x03j\x98\x01\x00\x00G?tz\xe1G\xae\x14{j\x99\x01\x00\x00}\x94(j\x9b\x01\x00\x00G?@bM\xd2\xf1\xa9\xfcj\x9c\x01\x00\x00K\x04j\x9d\x01\x00\x00K\x02uj\x9e\x01\x00\x00}\x94(j\xa0\x01\x00\x00G?tz\xe1G\xae\x14{j\xa1\x01\x00\x00K\x04j\xa2\x01\x00\x00K\x02uj\xa3\x01\x00\x00M\xe8\x03j\xa4\x01\x00\x00M\xf4\x01j\xa5\x01\x00\x00K\x05j\xa6\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\xa9\x01\x00\x00K\x01j\xaa\x01\x00\x00jy\x03\x00\x00j\xac\x01\x00\x00K\x00j\xad\x01\x00\x00jz\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\xb1\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xb2\x01\x00\x00}\x94(j\xb4\x01\x00\x00G?\xe3333333j\xb5\x01\x00\x00G?\xb9\x99\x99\x99\x99\x99\x9auj\xb6\x01\x00\x00j~\x03\x00\x00j\xb8\x01\x00\x00j\x7f\x03\x00\x00uu\x8c\x07plate13\x94}\x94(\x8c\x05group\x94\x8c\x05DRIVE\x94\x8c\x04date\x94j\x89\x03\x00\x00C\x04\x07\xe7\x0c\x01\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x14pdmH1N1_lib2023_loes\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c\x1fdata/plates/plate13_samples.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x97\x01\x00\x00M\xe8\x03j\x98\x01\x00\x00G?tz\xe1G\xae\x14{j\x99\x01\x00\x00}\x94(j\x9b\x01\x00\x00G?@bM\xd2\xf1\xa9\xfcj\x9c\x01\x00\x00K\x04j\x9d\x01\x00\x00K\x02uj\x9e\x01\x00\x00}\x94(j\xa0\x01\x00\x00G?tz\xe1G\xae\x14{j\xa1\x01\x00\x00K\x04j\xa2\x01\x00\x00K\x02uj\xa3\x01\x00\x00M\xe8\x03j\xa4\x01\x00\x00M\xf4\x01j\xa5\x01\x00\x00K\x05j\xa6\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\xa9\x01\x00\x00K\x01j\xaa\x01\x00\x00jy\x03\x00\x00j\xac\x01\x00\x00K\x00j\xad\x01\x00\x00jz\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\xb1\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xb2\x01\x00\x00}\x94(j\xb4\x01\x00\x00G?\xe3333333j\xb5\x01\x00\x00G?\xb9\x99\x99\x99\x99\x99\x9auj\xb6\x01\x00\x00j~\x03\x00\x00j\xb8\x01\x00\x00j\x7f\x03\x00\x00uu\x8c\nplate14lib\x94}\x94(\x8c\x05group\x94\x8c\nValidation\x94\x8c\x04date\x94j\x89\x03\x00\x00C\x04\x07\xe7\x08\x07\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x14pdmH1N1_lib2023_loes\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c&data/plates/plate14fulllib_samples.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x97\x01\x00\x00M\xe8\x03j\x98\x01\x00\x00G?tz\xe1G\xae\x14{j\x99\x01\x00\x00}\x94(j\x9b\x01\x00\x00G?@bM\xd2\xf1\xa9\xfcj\x9c\x01\x00\x00K\x04j\x9d\x01\x00\x00K\x02uj\x9e\x01\x00\x00}\x94(j\xa0\x01\x00\x00G?tz\xe1G\xae\x14{j\xa1\x01\x00\x00K\x04j\xa2\x01\x00\x00K\x02uj\xa3\x01\x00\x00M\xe8\x03j\xa4\x01\x00\x00M\xf4\x01j\xa5\x01\x00\x00K\x05j\xa6\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\xa9\x01\x00\x00K\x01j\xaa\x01\x00\x00jy\x03\x00\x00j\xac\x01\x00\x00K\x00j\xad\x01\x00\x00jz\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\xb1\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xb2\x01\x00\x00}\x94(j\xb4\x01\x00\x00G?\xe3333333j\xb5\x01\x00\x00G?\xb9\x99\x99\x99\x99\x99\x9auj\xb6\x01\x00\x00j~\x03\x00\x00j\xb8\x01\x00\x00j\x7f\x03\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06GCTACA\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x0eplate14halflib\x94}\x94(\x8c\x05group\x94\x8c\nValidation\x94\x8c\x04date\x94j\x89\x03\x00\x00C\x04\x07\xe7\x08\x07\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x14pdmH1N1_lib2023_loes\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c\'data/plates/plate14fhalflib_samples.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x97\x01\x00\x00M\xe8\x03j\x98\x01\x00\x00G?tz\xe1G\xae\x14{j\x99\x01\x00\x00}\x94(j\x9b\x01\x00\x00G?@bM\xd2\xf1\xa9\xfcj\x9c\x01\x00\x00K\x04j\x9d\x01\x00\x00K\x02uj\x9e\x01\x00\x00}\x94(j\xa0\x01\x00\x00G?tz\xe1G\xae\x14{j\xa1\x01\x00\x00K\x04j\xa2\x01\x00\x00K\x02uj\xa3\x01\x00\x00M\xe8\x03j\xa4\x01\x00\x00M\xf4\x01j\xa5\x01\x00\x00K\x05j\xa6\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\xa9\x01\x00\x00K\x01j\xaa\x01\x00\x00jy\x03\x00\x00j\xac\x01\x00\x00K\x00j\xad\x01\x00\x00jz\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\xb1\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xb2\x01\x00\x00}\x94(j\xb4\x01\x00\x00G?\xe3333333j\xb5\x01\x00\x00G?\xb9\x99\x99\x99\x99\x99\x9auj\xb6\x01\x00\x00j~\x03\x00\x00j\xb8\x01\x00\x00j\x7f\x03\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06GCTACA\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x0cplate14no5a1\x94}\x94(\x8c\x05group\x94\x8c\nValidation\x94\x8c\x04date\x94j\x89\x03\x00\x00C\x04\x07\xe7\x08\x07\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x14pdmH1N1_lib2023_loes\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c$data/plates/plate14no5a1_samples.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x97\x01\x00\x00M\xe8\x03j\x98\x01\x00\x00G?tz\xe1G\xae\x14{j\x99\x01\x00\x00}\x94(j\x9b\x01\x00\x00G?@bM\xd2\xf1\xa9\xfcj\x9c\x01\x00\x00K\x04j\x9d\x01\x00\x00K\x02uj\x9e\x01\x00\x00}\x94(j\xa0\x01\x00\x00G?tz\xe1G\xae\x14{j\xa1\x01\x00\x00K\x04j\xa2\x01\x00\x00K\x02uj\xa3\x01\x00\x00M\xe8\x03j\xa4\x01\x00\x00M\xf4\x01j\xa5\x01\x00\x00K\x05j\xa6\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\xa9\x01\x00\x00K\x01j\xaa\x01\x00\x00jy\x03\x00\x00j\xac\x01\x00\x00K\x00j\xad\x01\x00\x00jz\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\xb1\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xb2\x01\x00\x00}\x94(j\xb4\x01\x00\x00G?\xe3333333j\xb5\x01\x00\x00G?\xb9\x99\x99\x99\x99\x99\x9auj\xb6\x01\x00\x00j~\x03\x00\x00j\xb8\x01\x00\x00j\x7f\x03\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06GCTACA\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x0cplate14no5a2\x94}\x94(\x8c\x05group\x94\x8c\nValidation\x94\x8c\x04date\x94j\x89\x03\x00\x00C\x04\x07\xe7\x08\x07\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x14pdmH1N1_lib2023_loes\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c$data/plates/plate14no5a2_samples.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x97\x01\x00\x00M\xe8\x03j\x98\x01\x00\x00G?tz\xe1G\xae\x14{j\x99\x01\x00\x00}\x94(j\x9b\x01\x00\x00G?@bM\xd2\xf1\xa9\xfcj\x9c\x01\x00\x00K\x04j\x9d\x01\x00\x00K\x02uj\x9e\x01\x00\x00}\x94(j\xa0\x01\x00\x00G?tz\xe1G\xae\x14{j\xa1\x01\x00\x00K\x04j\xa2\x01\x00\x00K\x02uj\xa3\x01\x00\x00M\xe8\x03j\xa4\x01\x00\x00M\xf4\x01j\xa5\x01\x00\x00K\x05j\xa6\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\xa9\x01\x00\x00K\x01j\xaa\x01\x00\x00jy\x03\x00\x00j\xac\x01\x00\x00K\x00j\xad\x01\x00\x00jz\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\xb1\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xb2\x01\x00\x00}\x94(j\xb4\x01\x00\x00G?\xe3333333j\xb5\x01\x00\x00G?\xb9\x99\x99\x99\x99\x99\x9auj\xb6\x01\x00\x00j~\x03\x00\x00j\xb8\x01\x00\x00j\x7f\x03\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06GCTACA\x94\x8c\x12upstream2_mismatch\x94K\x01uuu\x8c\x16default_serum_titer_as\x94\x8c\x08midpoint\x94\x8c\x1bdefault_serum_qc_thresholds\x94}\x94(\x8c\x0emin_replicates\x94K\x02\x8c\x1bmax_fold_change_from_median\x94K\n\x8c\x11viruses_ignore_qc\x94]\x94u\x8c\x16sera_override_defaults\x94}\x94u\x8c\x04rule\x94\x8c\rprocess_plate\x94\x8c\x0fbench_iteration\x94N\x8c\tscriptdir\x94\x8cs/fh/fast/bloom_j/computational_notebooks/aloes/2024/flu_seqneut_DRIVE_2021-22_repeat_vax/seqneut-pipeline/notebooks\x94ub.'); from snakemake.logging import logger; logger.printshellcmds = False; import os; os.chdir(r'/fh/fast/bloom_j/computational_notebooks/aloes/2024/flu_seqneut_DRIVE_2021-22_repeat_vax');
######## snakemake preamble end #########
Process plate counts to get fraction infectivities and fit curves¶
This notebook is designed to be run using snakemake
, and analyzes a plate of sequencing-based neutralization assays.
The plots generated by this notebook are interactive, so you can mouseover points for details, use the mouse-scroll to zoom and pan, and use interactive dropdowns at the bottom of the plots.
Setup¶
Import Python modules:
import pickle
import sys
import altair as alt
import matplotlib.pyplot as plt
import neutcurve
import numpy
import pandas as pd
import ruamel.yaml as yaml
_ = alt.data_transformers.disable_max_rows()
Get the variables passed by snakemake
:
count_csvs = snakemake.input.count_csvs
fate_csvs = snakemake.input.fate_csvs
viral_library_csv = snakemake.input.viral_library_csv
neut_standard_set_csv = snakemake.input.neut_standard_set_csv
qc_drops_yaml = snakemake.output.qc_drops
frac_infectivity_csv = snakemake.output.frac_infectivity_csv
fits_csv = snakemake.output.fits_csv
fits_pickle = snakemake.output.fits_pickle
samples = snakemake.params.samples
plate = snakemake.wildcards.plate
plate_params = snakemake.params.plate_params
# get thresholds turning lists into tuples as needed
manual_drops = {
filter_type: [tuple(w) if isinstance(w, list) else w for w in filter_drops]
for (filter_type, filter_drops) in plate_params["manual_drops"].items()
}
group = plate_params["group"]
qc_thresholds = plate_params["qc_thresholds"]
curvefit_params = plate_params["curvefit_params"]
curvefit_qc = plate_params["curvefit_qc"]
curvefit_qc["barcode_serum_replicates_ignore_curvefit_qc"] = [
tuple(w) for w in curvefit_qc["barcode_serum_replicates_ignore_curvefit_qc"]
]
print(f"Processing {plate=}")
samples_df = pd.DataFrame(plate_params["samples"])
print(f"\nPlate has {len(samples)} samples (wells)")
assert all(
(len(samples_df) == samples_df[c].nunique())
for c in ["well", "sample", "sample_noplate"]
)
assert len(samples_df) == len(
samples_df.groupby(["serum_replicate", "dilution_factor"])
)
assert len(samples) == len(count_csvs) == len(fate_csvs) == len(samples_df)
for d, key, title in [
(manual_drops, "manual_drops", "Data manually specified to drop:"),
(qc_thresholds, "qc_thresholds", "QC thresholds applied to data:"),
(curvefit_params, "curvefit_params", "Curve-fitting parameters:"),
(curvefit_qc, "curvefit_qc", "Curve-fitting QC:"),
]:
print(f"\n{title}")
yaml.YAML(typ="rt").dump({key: d}, stream=sys.stdout)
Processing plate='plate9' Plate has 96 samples (wells) Data manually specified to drop: manual_drops: barcode_serum_replicates: - - CGGATAAAAATGATAT - D10417d30
QC thresholds applied to data: qc_thresholds: avg_barcode_counts_per_well: 1000 min_neut_standard_frac_per_well: 0.005 no_serum_per_viral_barcode_filters: min_frac: 0.0005 max_fold_change: 4 max_wells: 2 per_neut_standard_barcode_filters: min_frac: 0.005 max_fold_change: 4 max_wells: 2 min_neut_standard_count_per_well: 1000 min_no_serum_count_per_viral_barcode_well: 500 max_frac_infectivity_per_viral_barcode_well: 5 min_dilutions_per_barcode_serum_replicate: 6
Curve-fitting parameters: curvefit_params: frac_infectivity_ceiling: 1 fixtop: - 0.5 - 1 fixbottom: 0 fixslope: - 0.8 - 10
Curve-fitting QC: curvefit_qc: max_frac_infectivity_at_least: 0.5 goodness_of_fit: min_R2: 0.6 max_RMSD: 0.1 serum_replicates_ignore_curvefit_qc: [] barcode_serum_replicates_ignore_curvefit_qc: []
Set up dictionary to keep track of wells, barcodes, well-barcodes, and serum-replicates that are dropped:
qc_drops = {
"wells": {},
"barcodes": {},
"barcode_wells": {},
"barcode_serum_replicates": {},
"serum_replicates": {},
}
assert set(manual_drops).issubset(
qc_drops
), f"{manual_drops.keys()=}, {qc_drops.keys()}"
Statistics on barcode-parsing for each sample¶
Make interactive chart of the "fates" of the sequencing reads parsed for each sample on the plate.
If most sequencing reads are not "valid barcodes", this could potentially indicate some problem in the sequencing or barcode set you are parsing.
Potential fates are:
- valid barcode: barcode that matches a known virus or neutralization standard, we hope most reads are this.
- invalid barcode: a barcode with proper flanking sequences, but does not match a known virus or neutralization standard. If you have a lot of reads of this type, it is probably a good idea to look at the invalid barcode CSVs (in the
./results/barcode_invalid/
subdirectory created by the pipeline) to see what these invalid barcodes are. - unparseable barcode: could not parse a barcode from this read as there was not a sequence of the correct length with the appropriate flanking sequence.
- invalid outer flank: if using an outer upstream or downstream region (
upstream2
ordownstream2
for the illuminabarcodeparser), reads that are otherwise valid except for this outer flank. Typically you would be usingupstream2
if you have a plate index embedded in your primer, and reads with this classification correspond to a different index than the one for this plate. - low quality barcode: low-quality or
N
nucleotides in barcode, could indicate problem with sequencing. - failed chastity filter: reads that failed the Illumina chastity filter, if these are reported in the FASTQ (they may not be).
Also, if the number of reads per sample is very uneven, that could indicate that you did not do a good job of balancing the different samples in the Illumina sequencing.
fates = (
pd.concat([pd.read_csv(f).assign(sample=s) for f, s in zip(fate_csvs, samples)])
.merge(samples_df, validate="many_to_one", on="sample")
.assign(
fate_counts=lambda x: x.groupby("fate")["count"].transform("sum"),
sample_well=lambda x: x["sample_noplate"] + " (" + x["well"] + ")",
)
.query("fate_counts > 0")[ # only keep fates with at least one count
["fate", "count", "well", "serum_replicate", "sample_well", "dilution_factor"]
]
)
assert len(fates) == len(fates.drop_duplicates())
serum_replicates = sorted(fates["serum_replicate"].unique())
sample_wells = list(
fates.sort_values(["serum_replicate", "dilution_factor"])["sample_well"]
)
serum_selection = alt.selection_point(
fields=["serum_replicate"],
bind=alt.binding_select(
options=[None] + serum_replicates,
labels=["all"] + serum_replicates,
name="serum",
),
)
fates_chart = (
alt.Chart(fates)
.add_params(serum_selection)
.transform_filter(serum_selection)
.encode(
alt.X("count", scale=alt.Scale(nice=False, padding=3)),
alt.Y(
"sample_well",
title=None,
sort=sample_wells,
),
alt.Color("fate", sort=sorted(fates["fate"].unique(), reverse=True)),
alt.Order("fate", sort="descending"),
tooltip=fates.columns.tolist(),
)
.mark_bar(height={"band": 0.85})
.properties(
height=alt.Step(10),
width=200,
title=f"Barcode parsing for {plate}",
)
.configure_axis(grid=False)
)
fates_chart
Read barcode counts and apply manually specified drops¶
Read the counts per barcode:
# get barcode counts
counts = (
pd.concat([pd.read_csv(c).assign(sample=s) for c, s in zip(count_csvs, samples)])
.merge(samples_df, validate="many_to_one", on="sample")
.drop(columns=["replicate", "plate", "fastq"])
.assign(sample_well=lambda x: x["sample_noplate"] + " (" + x["well"] + ")")
)
# classify barcodes as viral or neut standard
barcode_class = pd.concat(
[
pd.read_csv(viral_library_csv)[["barcode", "strain"]].assign(
neut_standard=False,
),
pd.read_csv(neut_standard_set_csv)[["barcode"]].assign(
neut_standard=True,
strain=pd.NA,
),
],
ignore_index=True,
)
# merge counts and classification of barcodes
assert set(counts["barcode"]) == set(barcode_class["barcode"])
counts = counts.merge(barcode_class, on="barcode", validate="many_to_one")
assert set(sample_wells) == set(counts["sample_well"])
assert set(serum_replicates) == set(counts["serum_replicate"])
Apply any manually specified data drops:
for filter_type, filter_drops in manual_drops.items():
print(f"\nDropping {len(filter_drops)} {filter_type} specified in manual_drops")
assert filter_type in qc_drops
qc_drops[filter_type].update(
{w: "manual_drop" for w in filter_drops if not isinstance(w, list)}
)
if filter_type == "barcode_wells":
counts = counts[
~counts.assign(
barcode_well=lambda x: x.apply(
lambda r: (r["barcode"], r["well"]), axis=1
)
)["barcode_well"].isin(qc_drops[filter_type])
]
elif filter_type == "barcode_serum_replicates":
counts = counts[
~counts.assign(
barcode_serum_replicate=lambda x: x.apply(
lambda r: (r["barcode"], r["serum_replicate"]), axis=1
)
)["barcode_serum_replicate"].isin(qc_drops[filter_type])
]
elif filter_type == "wells":
counts = counts[~counts["well"].isin(qc_drops[filter_type])]
elif filter_type == "barcodes":
counts = counts[~counts["barcode"].isin(qc_drops[filter_type])]
else:
assert filter_type in set(counts.columns)
counts = counts[~counts[filter_type].isin(qc_drops[filter_type])]
Dropping 1 barcode_serum_replicates specified in manual_drops
Average counts per barcode in each well¶
Plot average counts per barcode. If a sample has inadequate barcode counts, it may not have good enough statistics for accurate analysis, and a QC-threshold is applied:
avg_barcode_counts = (
counts.groupby(
["well", "serum_replicate", "sample_well"],
dropna=False,
as_index=False,
)
.aggregate(avg_count=pd.NamedAgg("count", "mean"))
.assign(
fails_qc=lambda x: (
x["avg_count"] < qc_thresholds["avg_barcode_counts_per_well"]
),
)
)
avg_barcode_counts_chart = (
alt.Chart(avg_barcode_counts)
.add_params(serum_selection)
.transform_filter(serum_selection)
.encode(
alt.X(
"avg_count",
title="average barcode counts per well",
scale=alt.Scale(nice=False, padding=3),
),
alt.Y("sample_well", sort=sample_wells),
alt.Color(
"fails_qc",
title=f"fails {qc_thresholds['avg_barcode_counts_per_well']=}",
legend=alt.Legend(titleLimit=500),
),
tooltip=[
alt.Tooltip(c, format=".3g") if avg_barcode_counts[c].dtype == float else c
for c in avg_barcode_counts.columns
],
)
.mark_bar(height={"band": 0.85})
.properties(
height=alt.Step(10),
width=250,
title=f"Average barcode counts per well for {plate}",
)
.configure_axis(grid=False)
)
display(avg_barcode_counts_chart)
# drop wells failing QC
avg_barcode_counts_per_well_drops = list(avg_barcode_counts.query("fails_qc")["well"])
print(
f"\nDropping {len(avg_barcode_counts_per_well_drops)} wells for failing "
f"{qc_thresholds['avg_barcode_counts_per_well']=}: "
+ str(avg_barcode_counts_per_well_drops)
)
qc_drops["wells"].update(
{w: "avg_barcode_counts_per_well" for w in avg_barcode_counts_per_well_drops}
)
counts = counts[~counts["well"].isin(qc_drops["wells"])]
Dropping 0 wells for failing qc_thresholds['avg_barcode_counts_per_well']=1000: []
Fraction of counts from neutralization standard¶
Determine the fraction of counts from the neutralization standard in each sample, and make sure this fraction passess the QC threshold.
neut_standard_fracs = (
counts.assign(
neut_standard_count=lambda x: x["count"] * x["neut_standard"].astype(int)
)
.groupby(
["well", "serum_replicate", "sample_well"],
dropna=False,
as_index=False,
)
.aggregate(
total_count=pd.NamedAgg("count", "sum"),
neut_standard_count=pd.NamedAgg("neut_standard_count", "sum"),
)
.assign(
neut_standard_frac=lambda x: x["neut_standard_count"] / x["total_count"],
fails_qc=lambda x: (
x["neut_standard_frac"] < qc_thresholds["min_neut_standard_frac_per_well"]
),
)
)
neut_standard_fracs_chart = (
alt.Chart(neut_standard_fracs)
.add_params(serum_selection)
.transform_filter(serum_selection)
.encode(
alt.X(
"neut_standard_frac",
title="frac counts from neutralization standard per well",
scale=alt.Scale(nice=False, padding=3),
),
alt.Y("sample_well", sort=sample_wells),
alt.Color(
"fails_qc",
title=f"fails {qc_thresholds['min_neut_standard_frac_per_well']=}",
legend=alt.Legend(titleLimit=500),
),
tooltip=[
alt.Tooltip(c, format=".3g") if neut_standard_fracs[c].dtype == float else c
for c in neut_standard_fracs.columns
],
)
.mark_bar(height={"band": 0.85})
.properties(
height=alt.Step(10),
width=250,
title=f"Neutralization-standard fracs per well for {plate}",
)
.configure_axis(grid=False)
.configure_legend(titleLimit=1000)
)
display(neut_standard_fracs_chart)
# drop wells failing QC
min_neut_standard_frac_per_well_drops = list(
neut_standard_fracs.query("fails_qc")["well"]
)
print(
f"\nDropping {len(min_neut_standard_frac_per_well_drops)} wells for failing "
f"{qc_thresholds['min_neut_standard_frac_per_well']=}: "
+ str(min_neut_standard_frac_per_well_drops)
)
qc_drops["wells"].update(
{
w: "min_neut_standard_frac_per_well"
for w in min_neut_standard_frac_per_well_drops
}
)
counts = counts[~counts["well"].isin(qc_drops["wells"])]
Dropping 0 wells for failing qc_thresholds['min_neut_standard_frac_per_well']=0.005: []
Consistency and minimum fractions for barcodes¶
We examine the fraction of counts attributable to each barcode. We do this splitting the data two ways:
Looking at all viral (but not neut-standard) barcodes only for the no-serum samples (wells).
Looking at just the neut-standard barcodes for all samples (wells).
The reasons is that if the experiment is set up perfectly, these fractions should be the same across all samples for each barcode. (We do not expect viral barcodes to have consistent fractions across no-serum samples as they will be neutralized differently depending on strain).
We plot these fractions in interactive plots (you can mouseover points and zoom) so you can identify barcodes that fail the expected consistency QC thresholds.
We also make sure the barcodes meet specified QC minimum thresholds for all samples, and flag any that do not.
barcode_selection = alt.selection_point(fields=["barcode"], on="mouseover", empty=False)
# look at all samples for neut standard barcodes, or no-serum samples for all barcodes
for is_neut_standard, df in counts.groupby("neut_standard"):
if is_neut_standard:
print(
f"\n\n{'=' * 89}\nAnalyzing neut-standard barcodes from all samples (wells)"
)
qc_name = "per_neut_standard_barcode_filters"
else:
print(f"\n\n{'=' * 89}\nAnalyzing all barcodes from no-serum samples (wells)")
qc_name = "no_serum_per_viral_barcode_filters"
df = df.query("serum == 'none'")
df = df.assign(
sample_counts=lambda x: x.groupby("sample")["count"].transform("sum"),
count_frac=lambda x: x["count"] / x["sample_counts"],
median_count_frac=lambda x: x.groupby("barcode")["count_frac"].transform(
"median"
),
fold_change_from_median=lambda x: numpy.where(
x["count_frac"] > x["median_count_frac"],
x["count_frac"] / x["median_count_frac"],
x["median_count_frac"] / x["count_frac"],
),
)[
[
"barcode",
"count",
"well",
"sample_well",
"count_frac",
"median_count_frac",
"fold_change_from_median",
]
+ ([] if is_neut_standard else ["strain"])
]
# barcode fails QC if fails in sufficient wells
qc = qc_thresholds[qc_name]
print(f"Apply QC {qc_name}: {qc}\n")
fails_qc = (
df.assign(
fails_qc=lambda x: ~(
(x["count_frac"] >= qc["min_frac"])
& (x["fold_change_from_median"] <= qc["max_fold_change"])
),
)
.groupby("barcode", as_index=False)
.aggregate(n_wells_fail_qc=pd.NamedAgg("fails_qc", "sum"))
.assign(fails_qc=lambda x: x["n_wells_fail_qc"] >= qc["max_wells"])[
["barcode", "fails_qc"]
]
)
df = df.merge(fails_qc, on="barcode", validate="many_to_one")
# make chart
evenness_chart = (
alt.Chart(df)
.add_params(barcode_selection)
.encode(
alt.X(
"count_frac",
title=(
"barcode's fraction of neut standard counts"
if is_neut_standard
else "barcode's fraction of non-neut standard counts"
),
scale=alt.Scale(nice=False, padding=5),
),
alt.Y("sample_well", sort=sample_wells),
alt.Fill(
"fails_qc",
title=f"fails {qc_name}",
legend=alt.Legend(titleLimit=500),
),
strokeWidth=alt.condition(barcode_selection, alt.value(2), alt.value(0)),
size=alt.condition(barcode_selection, alt.value(60), alt.value(35)),
tooltip=[
alt.Tooltip(c, format=".2g") if df[c].dtype == float else c
for c in df.columns
],
)
.mark_circle(fillOpacity=0.45, stroke="black", strokeOpacity=1)
.properties(
height=alt.Step(10),
width=300,
title=alt.TitleParams(
(
f"{plate} all samples, neut-standard barcodes"
if is_neut_standard
else f"{plate} no-serum samples, all barcodes"
),
subtitle="x-axis is zoomable (use mouse scroll/pan)",
),
)
.configure_axis(grid=False)
.configure_legend(titleLimit=1000)
.interactive()
)
display(evenness_chart)
# drop barcodes failing QC
barcode_drops = list(fails_qc.query("fails_qc")["barcode"])
print(
f"\nDropping {len(barcode_drops)} barcodes for failing {qc=}: {barcode_drops}"
)
qc_drops["barcodes"].update(
{bc: "min_neut_standard_frac_per_well" for bc in barcode_drops}
)
counts = counts[~counts["barcode"].isin(qc_drops["barcodes"])]
========================================================================================= Analyzing all barcodes from no-serum samples (wells) Apply QC no_serum_per_viral_barcode_filters: {'min_frac': 0.0005, 'max_fold_change': 4, 'max_wells': 2}
Dropping 0 barcodes for failing qc={'min_frac': 0.0005, 'max_fold_change': 4, 'max_wells': 2}: [] ========================================================================================= Analyzing neut-standard barcodes from all samples (wells) Apply QC per_neut_standard_barcode_filters: {'min_frac': 0.005, 'max_fold_change': 4, 'max_wells': 2}
Dropping 0 barcodes for failing qc={'min_frac': 0.005, 'max_fold_change': 4, 'max_wells': 2}: []
Compute fraction infectivity¶
The fraction infectivity for viral barcode $v_b$ in sample $s$ is computed as: $$ F_{v_b,s} = \frac{c_{v_b,s} / \left(\sum_{n_b} c_{n_b,s}\right)}{{\rm median}_{s_0}\left[ c_{v_b,s_0} / \left(\sum_{n_b} c_{n_b,s_0}\right)\right]} $$ where
- $c_{v_b,s}$ is the counts of viral barcode $v_b$ in sample $s$.
- $\sum_{n_b} c_{n_b,s}$ is the sum of the counts for all neutralization standard barcodes $n_b$ for sample $s$.
- $c_{v_b,s_0}$ is the counts of viral barcode $v_b$ in no-serum sample $s_0$.
- $\sum_{n_b} c_{n_b,s_0}$ is the sum of the counts for all neutralization standard barcodes $n_b$ for no-serum sample $s_0$.
- ${\rm median}_{s_0}\left[ c_{v_b,s_0} / \left(\sum_{n_b} c_{n_b,s_0}\right)\right]$ is the median taken across all no-serum samples of the counts of viral barcode $v_b$ versus the total counts for all neutralization standard barcodes.
First, compute the total neutralization-standard counts for each sample (well). Plot these, and drop any wells that do not meet the QC threshold.
neut_standard_counts = (
counts.query("neut_standard")
.groupby(
["well", "serum_replicate", "sample_well", "dilution_factor"],
dropna=False,
as_index=False,
)
.aggregate(neut_standard_count=pd.NamedAgg("count", "sum"))
.assign(
fails_qc=lambda x: (
x["neut_standard_count"] < qc_thresholds["min_neut_standard_count_per_well"]
),
)
)
neut_standard_counts_chart = (
alt.Chart(neut_standard_counts)
.add_params(serum_selection)
.transform_filter(serum_selection)
.encode(
alt.X(
"neut_standard_count",
title="counts from neutralization standard",
scale=alt.Scale(nice=False, padding=3),
),
alt.Y("sample_well", sort=sample_wells),
alt.Color(
"fails_qc",
title=f"fails {qc_thresholds['min_neut_standard_count_per_well']=}",
legend=alt.Legend(titleLimit=500),
),
tooltip=[
(
alt.Tooltip(c, format=".3g")
if neut_standard_counts[c].dtype == float
else c
)
for c in neut_standard_counts.columns
],
)
.mark_bar(height={"band": 0.85})
.properties(
height=alt.Step(10),
width=250,
title=f"Neutralization-standard counts for {plate}",
)
.configure_axis(grid=False)
.configure_legend(titleLimit=1000)
)
display(neut_standard_counts_chart)
# drop wells failing QC
min_neut_standard_count_per_well_drops = list(
neut_standard_counts.query("fails_qc")["well"]
)
print(
f"\nDropping {len(min_neut_standard_count_per_well_drops)} wells for failing "
f"{qc_thresholds['min_neut_standard_count_per_well']=}: "
+ str(min_neut_standard_count_per_well_drops)
)
qc_drops["wells"].update(
{
w: "min_neut_standard_count_per_well"
for w in min_neut_standard_count_per_well_drops
}
)
neut_standard_counts = neut_standard_counts[
~neut_standard_counts["well"].isin(qc_drops["wells"])
]
counts = counts[~counts["well"].isin(qc_drops["wells"])]
Dropping 0 wells for failing qc_thresholds['min_neut_standard_count_per_well']=1000: []
Compute and plot the no-serum sample viral barcode counts and check if they pass the QC filters.
no_serum_counts = (
counts.query("serum == 'none'")
.query("not neut_standard")
.merge(neut_standard_counts, validate="many_to_one")[
["barcode", "strain", "well", "sample_well", "count", "neut_standard_count"]
]
.assign(
fails_qc=lambda x: (
x["count"] <= qc_thresholds["min_no_serum_count_per_viral_barcode_well"]
),
)
)
strains = sorted(no_serum_counts["strain"].unique())
strain_selection_dropdown = alt.selection_point(
fields=["strain"],
bind=alt.binding_select(
options=[None] + strains,
labels=["all"] + strains,
name="virus strain",
),
)
# make chart
no_serum_counts_chart = (
alt.Chart(no_serum_counts)
.add_params(barcode_selection, strain_selection_dropdown)
.transform_filter(strain_selection_dropdown)
.encode(
alt.X(
"count", title="viral barcode count", scale=alt.Scale(nice=False, padding=5)
),
alt.Y("sample_well", sort=sample_wells),
alt.Fill(
"fails_qc",
title=f"fails {qc_thresholds['min_no_serum_count_per_viral_barcode_well']=}",
legend=alt.Legend(titleLimit=500),
),
strokeWidth=alt.condition(barcode_selection, alt.value(2), alt.value(0)),
size=alt.condition(barcode_selection, alt.value(60), alt.value(35)),
tooltip=no_serum_counts.columns.tolist(),
)
.mark_circle(fillOpacity=0.6, stroke="black", strokeOpacity=1)
.properties(
height=alt.Step(10),
width=400,
title=f"{plate} viral barcode counts in no-serum samples",
)
.configure_axis(grid=False)
.configure_legend(titleLimit=1000)
.interactive()
)
display(no_serum_counts_chart)
# drop barcode / wells failing QC
min_no_serum_count_per_viral_barcode_well_drops = list(
no_serum_counts.query("fails_qc")[["barcode", "well"]].itertuples(
index=False, name=None
)
)
print(
f"\nDropping {len(min_no_serum_count_per_viral_barcode_well_drops)} barcode-wells for failing "
f"{qc_thresholds['min_no_serum_count_per_viral_barcode_well']=}: "
+ str(min_no_serum_count_per_viral_barcode_well_drops)
)
qc_drops["barcode_wells"].update(
{
w: "min_no_serum_count_per_viral_barcode_well"
for w in min_no_serum_count_per_viral_barcode_well_drops
}
)
no_serum_counts = no_serum_counts[
~no_serum_counts.assign(
barcode_well=lambda x: x.apply(lambda r: (r["barcode"], r["well"]), axis=1)
)["barcode_well"].isin(qc_drops["barcode_wells"])
]
counts = counts[
~counts.assign(
barcode_well=lambda x: x.apply(lambda r: (r["barcode"], r["well"]), axis=1)
)["barcode_well"].isin(qc_drops["barcode_wells"])
]
Dropping 0 barcode-wells for failing qc_thresholds['min_no_serum_count_per_viral_barcode_well']=500: []
Compute and plot the median ratio of viral barcode count to neut standard counts across no-serum samples. If library composition is equal, all of these values should be similar:
median_no_serum_ratio = (
no_serum_counts.assign(ratio=lambda x: x["count"] / x["neut_standard_count"])
.groupby(["barcode", "strain"], as_index=False)
.aggregate(median_no_serum_ratio=pd.NamedAgg("ratio", "median"))
)
strain_selection = alt.selection_point(fields=["strain"], on="mouseover", empty=False)
median_no_serum_ratio_chart = (
alt.Chart(median_no_serum_ratio)
.add_params(strain_selection)
.encode(
alt.X(
"median_no_serum_ratio",
title="median ratio of counts",
scale=alt.Scale(nice=False, padding=5),
),
alt.Y(
"barcode",
sort=alt.SortField("median_no_serum_ratio", order="descending"),
axis=alt.Axis(labelFontSize=5),
),
color=alt.condition(strain_selection, alt.value("orange"), alt.value("gray")),
tooltip=[
(
alt.Tooltip(c, format=".3g")
if median_no_serum_ratio[c].dtype == float
else c
)
for c in median_no_serum_ratio.columns
],
)
.mark_bar(height={"band": 0.85})
.properties(
height=alt.Step(5),
width=250,
title=f"{plate} no-serum median ratio viral barcode to neut-standard barcode",
)
.configure_axis(grid=False)
.configure_legend(titleLimit=1000)
)
display(median_no_serum_ratio_chart)
Compute the actual fraction infectivities. We compute both the raw fraction infectivities and the ones with the ceiling applied:
frac_infectivity = (
counts.query("not neut_standard")
.query("serum != 'none'")
.merge(median_no_serum_ratio, validate="many_to_one")
.merge(neut_standard_counts, validate="many_to_one")
.assign(
frac_infectivity_raw=lambda x: (
(x["count"] / x["neut_standard_count"]) / x["median_no_serum_ratio"]
),
frac_infectivity_ceiling=lambda x: x["frac_infectivity_raw"].clip(
upper=curvefit_params["frac_infectivity_ceiling"]
),
concentration=lambda x: 1 / x["dilution_factor"],
plate_barcode=lambda x: x["plate_replicate"] + "-" + x["barcode"],
)[
[
"barcode",
"plate_barcode",
"well",
"strain",
"serum",
"serum_replicate",
"dilution_factor",
"concentration",
"frac_infectivity_raw",
"frac_infectivity_ceiling",
]
]
)
assert len(
frac_infectivity.groupby(["serum", "plate_barcode", "dilution_factor"])
) == len(frac_infectivity)
assert frac_infectivity["dilution_factor"].notnull().all()
assert frac_infectivity["frac_infectivity_raw"].notnull().all()
assert frac_infectivity["frac_infectivity_ceiling"].notnull().all()
Plot the fraction infectivities, both the raw values and with the ceiling applied:
frac_infectivity_chart_df = (
frac_infectivity.assign(
fails_qc=lambda x: (
x["frac_infectivity_raw"]
> qc_thresholds["max_frac_infectivity_per_viral_barcode_well"]
),
)
.melt(
id_vars=[
"barcode",
"strain",
"well",
"serum_replicate",
"dilution_factor",
"fails_qc",
],
value_vars=["frac_infectivity_raw", "frac_infectivity_ceiling"],
var_name="ceiling_applied",
value_name="frac_infectivity",
)
.assign(
ceiling_applied=lambda x: x["ceiling_applied"].map(
{
"frac_infectivity_raw": "raw fraction infectivity",
"frac_infectivity_ceiling": f"fraction infectivity with ceiling at {curvefit_params['frac_infectivity_ceiling']}",
}
)
)
)
frac_infectivity_chart = (
alt.Chart(frac_infectivity_chart_df)
.add_params(strain_selection_dropdown, barcode_selection)
.transform_filter(strain_selection_dropdown)
.encode(
alt.X(
"dilution_factor",
title="dilution factor",
scale=alt.Scale(nice=False, padding=5, type="log"),
),
alt.Y(
"frac_infectivity",
title="fraction infectivity",
scale=alt.Scale(nice=False, padding=5),
),
alt.Column(
"ceiling_applied",
sort="descending",
title=None,
header=alt.Header(labelFontSize=13, labelFontStyle="bold", labelPadding=2),
),
alt.Row(
"serum_replicate",
title=None,
spacing=3,
header=alt.Header(labelFontSize=13, labelFontStyle="bold"),
),
alt.Detail("barcode"),
alt.Shape(
"fails_qc",
title=f"fails {qc_thresholds['max_frac_infectivity_per_viral_barcode_well']=}",
legend=alt.Legend(titleLimit=500, orient="bottom"),
),
color=alt.condition(
barcode_selection, alt.value("black"), alt.value("MediumBlue")
),
strokeWidth=alt.condition(barcode_selection, alt.value(3), alt.value(1)),
opacity=alt.condition(barcode_selection, alt.value(1), alt.value(0.25)),
tooltip=[
(
alt.Tooltip(c, format=".3g")
if frac_infectivity_chart_df[c].dtype == float
else c
)
for c in frac_infectivity_chart_df.columns
],
)
.mark_line(point=True)
.properties(
height=150,
width=250,
title=f"Fraction infectivities for {plate}",
)
.interactive(bind_x=False)
.configure_axis(grid=False)
.configure_legend(titleLimit=1000)
.configure_point(size=50)
.resolve_scale(x="independent", y="independent")
)
display(frac_infectivity_chart)
# drop barcode / wells failing QC
max_frac_infectivity_per_viral_barcode_well_drops = list(
frac_infectivity_chart_df.query("fails_qc")[["barcode", "well"]]
.drop_duplicates()
.itertuples(index=False, name=None)
)
print(
f"\nDropping {len(max_frac_infectivity_per_viral_barcode_well_drops)} barcode-wells for failing "
f"{qc_thresholds['max_frac_infectivity_per_viral_barcode_well']=}: "
+ str(max_frac_infectivity_per_viral_barcode_well_drops)
)
qc_drops["barcode_wells"].update(
{
w: "max_frac_infectivity_per_viral_barcode_well"
for w in max_frac_infectivity_per_viral_barcode_well_drops
}
)
frac_infectivity = frac_infectivity[
~frac_infectivity.assign(
barcode_well=lambda x: x.apply(lambda r: (r["barcode"], r["well"]), axis=1)
)["barcode_well"].isin(qc_drops["barcode_wells"])
]
Dropping 2 barcode-wells for failing qc_thresholds['max_frac_infectivity_per_viral_barcode_well']=5: [('CGGCGTATCGTTCACA', 'H4'), ('GCAATCCCGCAATTTG', 'H4')]
Check how many dilutions we have per barcode / serum-replicate:
n_dilutions = (
frac_infectivity.groupby(["serum_replicate", "strain", "barcode"], as_index=False)
.aggregate(**{"number of dilutions": pd.NamedAgg("dilution_factor", "nunique")})
.assign(
fails_qc=lambda x: (
x["number of dilutions"]
< qc_thresholds["min_dilutions_per_barcode_serum_replicate"]
),
)
)
n_dilutions_chart = (
alt.Chart(n_dilutions)
.add_params(barcode_selection)
.encode(
alt.X("number of dilutions", scale=alt.Scale(nice=False, padding=4)),
alt.Y("strain", title=None),
alt.Column(
"serum_replicate",
title=None,
header=alt.Header(labelFontSize=12, labelFontStyle="bold", labelPadding=0),
),
alt.Fill(
"fails_qc",
title=f"fails {qc_thresholds['min_dilutions_per_barcode_serum_replicate']=}",
legend=alt.Legend(titleLimit=500, orient="bottom"),
),
strokeWidth=alt.condition(barcode_selection, alt.value(2), alt.value(0)),
size=alt.condition(barcode_selection, alt.value(55), alt.value(35)),
tooltip=[
alt.Tooltip(c, format=".3g") if n_dilutions[c].dtype == float else c
for c in n_dilutions.columns
],
)
.mark_circle(stroke="black", strokeOpacity=1, fillOpacity=0.45)
.properties(
height=alt.Step(10),
width=120,
title=alt.TitleParams(
"number of dilutions for each barcode for each serum-replicate", dy=-2
),
)
)
display(n_dilutions_chart)
# drop barcode / serum-replicates failing QC
min_dilutions_per_barcode_serum_replicate_drops = list(
n_dilutions.query("fails_qc")[["barcode", "serum_replicate"]].itertuples(
index=False, name=None
)
)
print(
f"\nDropping {len(min_dilutions_per_barcode_serum_replicate_drops)} barcode/serum-replicates for failing "
f"{qc_thresholds['min_dilutions_per_barcode_serum_replicate']=}: "
+ str(min_dilutions_per_barcode_serum_replicate_drops)
)
qc_drops["barcode_serum_replicates"].update(
{
w: "min_dilutions_per_barcode_serum_replicate"
for w in min_dilutions_per_barcode_serum_replicate_drops
}
)
frac_infectivity = frac_infectivity[
~frac_infectivity.assign(
barcode_serum_replicate=lambda x: x.apply(
lambda r: (r["barcode"], r["serum_replicate"]), axis=1
)
)["barcode_serum_replicate"].isin(qc_drops["barcode_serum_replicates"])
]
Dropping 0 barcode/serum-replicates for failing qc_thresholds['min_dilutions_per_barcode_serum_replicate']=6: []
Fit neutralization curves without applying QC to curves¶
First fit curves to all serum replicates, then we will apply QC on the curve fits. Note that the fitting is done to the fraction infectivities with the ceiling:
fits_noqc = neutcurve.CurveFits(
frac_infectivity.rename(
columns={
"frac_infectivity_ceiling": "fraction infectivity",
"concentration": "serum concentration",
}
),
conc_col="serum concentration",
fracinf_col="fraction infectivity",
virus_col="strain",
serum_col="serum_replicate",
replicate_col="barcode",
fixtop=curvefit_params["fixtop"],
fixbottom=curvefit_params["fixbottom"],
fixslope=curvefit_params["fixslope"],
)
Determine which fits fail the curve fitting QC, and plot them. Note the plot indicates as failing QC any barcode / serum-replicate that fails, even if we are also specified to ignore the QC for that one (so it will not be removed later):
goodness_of_fit = curvefit_qc["goodness_of_fit"]
fit_params_noqc = (
frac_infectivity.groupby(["serum_replicate", "barcode"], as_index=False)
.aggregate(max_frac_infectivity=pd.NamedAgg("frac_infectivity_ceiling", "max"))
.merge(
fits_noqc.fitParams(average_only=False, no_average=True)[
["serum", "virus", "replicate", "r2", "rmsd"]
].rename(columns={"serum": "serum_replicate", "replicate": "barcode"}),
validate="one_to_one",
)
.assign(
fails_max_frac_infectivity_at_least=lambda x: (
x["max_frac_infectivity"] < curvefit_qc["max_frac_infectivity_at_least"]
),
fails_goodness_of_fit=lambda x: (
(x["r2"] < goodness_of_fit["min_R2"])
& (x["rmsd"] > goodness_of_fit["max_RMSD"])
),
fails_qc=lambda x: (
x["fails_max_frac_infectivity_at_least"] | x["fails_goodness_of_fit"]
),
ignore_qc=lambda x: x.apply(
lambda r: (
(
r["serum_replicate"]
in curvefit_qc["serum_replicates_ignore_curvefit_qc"]
)
or (
(r["barcode"], r["serum_replicate"])
in curvefit_qc["barcode_serum_replicates_ignore_curvefit_qc"]
)
),
axis=1,
),
)
)
print(f"Plotting barcode / serum-replicates that fail {curvefit_qc=}\n")
for prop, col in [
("max frac infectivity", "max_frac_infectivity"),
("curve fit R2", "r2"),
("curve fit RMSD", "rmsd"),
]:
fit_params_noqc_chart = (
alt.Chart(fit_params_noqc)
.add_params(barcode_selection)
.encode(
alt.X(col, title=prop, scale=alt.Scale(nice=False, padding=4)),
alt.Y("virus", title=None),
alt.Fill("fails_qc"),
alt.Column(
"serum_replicate",
title=None,
header=alt.Header(
labelFontSize=12, labelFontStyle="bold", labelPadding=0
),
),
strokeWidth=alt.condition(barcode_selection, alt.value(2), alt.value(0)),
size=alt.condition(barcode_selection, alt.value(55), alt.value(35)),
tooltip=[
alt.Tooltip(c, format=".3g") if fit_params_noqc[c].dtype == float else c
for c in fit_params_noqc.columns
],
)
.mark_circle(stroke="black", strokeOpacity=1, fillOpacity=0.55)
.properties(
height=alt.Step(10),
width=120,
title=alt.TitleParams(f"{prop} for each barcode serum-replicate", dy=-2),
)
)
display(fit_params_noqc_chart)
/fh/fast/bloom_j/computational_notebooks/aloes/2024/flu_seqneut_DRIVE_2021-22_repeat_vax/.snakemake/conda/014bd9b36c34fcb424454141f9c8f5d9_/lib/python3.12/site-packages/neutcurve/hillcurve.py:1177: RuntimeWarning: invalid value encountered in power return b + (t - b) / (1 + (c / m) ** s)
Plotting barcode / serum-replicates that fail curvefit_qc={'max_frac_infectivity_at_least': 0.5, 'goodness_of_fit': {'min_R2': 0.6, 'max_RMSD': 0.1}, 'serum_replicates_ignore_curvefit_qc': [], 'barcode_serum_replicates_ignore_curvefit_qc': []}
Now get all barcode / serum-replicate pairs that fail any of the QC. Plot curves for just these virus / serum-replicates (we plot all barcodes for a virus even if just one fails QC), and then exclude any that are not specified to ignore the QC:
barcode_serum_replicates_fail_qc = fit_params_noqc.query("fails_qc").reset_index(
drop=True
)
print(f"Here are barcode / serum-replicates that fail {curvefit_qc=}")
display(barcode_serum_replicates_fail_qc)
if len(barcode_serum_replicates_fail_qc):
print("\nCurves for viruses and serum-replicates with at least one failed barcode:")
fig, _ = fits_noqc.plotReplicates(
sera=sorted(barcode_serum_replicates_fail_qc["serum_replicate"].unique()),
viruses=sorted(barcode_serum_replicates_fail_qc["virus"].unique()),
attempt_shared_legend=False,
legendfontsize=8,
titlesize=10,
ticksize=10,
ncol=6,
draw_in_bounds=True,
)
display(fig)
plt.close(fig)
# drop barcode / serum-replicates failing QC
for qc_filter in ["max_frac_infectivity_at_least", "goodness_of_fit"]:
fits_qc_drops = list(
fit_params_noqc.query(f"fails_{qc_filter} and (not ignore_qc)")[
["barcode", "serum_replicate"]
].itertuples(index=False, name=None)
)
print(
f"\nDropping {len(fits_qc_drops)} barcode/serum-replicates for failing "
f"{qc_filter}={curvefit_qc[qc_filter]}: " + str(fits_qc_drops)
)
qc_drops["barcode_serum_replicates"].update({w: qc_filter for w in fits_qc_drops})
frac_infectivity = frac_infectivity[
~frac_infectivity.assign(
barcode_serum_replicate=lambda x: x.apply(
lambda r: (r["barcode"], r["serum_replicate"]), axis=1
)
)["barcode_serum_replicate"].isin(qc_drops["barcode_serum_replicates"])
]
fit_params_noqc = fit_params_noqc[
~fit_params_noqc.assign(
barcode_serum_replicate=lambda x: x.apply(
lambda r: (r["barcode"], r["serum_replicate"]), axis=1
)
)["barcode_serum_replicate"].isin(qc_drops["barcode_serum_replicates"])
]
Here are barcode / serum-replicates that fail curvefit_qc={'max_frac_infectivity_at_least': 0.5, 'goodness_of_fit': {'min_R2': 0.6, 'max_RMSD': 0.1}, 'serum_replicates_ignore_curvefit_qc': [], 'barcode_serum_replicates_ignore_curvefit_qc': []}
serum_replicate | barcode | max_frac_infectivity | virus | r2 | rmsd | fails_max_frac_infectivity_at_least | fails_goodness_of_fit | fails_qc | ignore_qc | |
---|---|---|---|---|---|---|---|---|---|---|
0 | D10291d0 | AGAGAAAAAACAGTGA | 1.0 | A/Michigan/19/2021 | 5.263351e-02 | 0.229445 | False | True | True | False |
1 | D10291d0 | ATGTCCATAAAAAATA | 1.0 | A/Belgium/H0017/2022 | 4.515971e-01 | 0.143703 | False | True | True | False |
2 | D10291d0 | CCTTTCTCAAAACATA | 1.0 | A/California/07/2009 | 1.970195e-01 | 0.243965 | False | True | True | False |
3 | D10291d0 | TTGGGGAAATATATAA | 1.0 | A/Perth/1/2022 | -2.220446e-16 | 0.167676 | False | True | True | False |
Curves for viruses and serum-replicates with at least one failed barcode:
Dropping 0 barcode/serum-replicates for failing max_frac_infectivity_at_least=0.5: [] Dropping 4 barcode/serum-replicates for failing goodness_of_fit={'min_R2': 0.6, 'max_RMSD': 0.1}: [('AGAGAAAAAACAGTGA', 'D10291d0'), ('ATGTCCATAAAAAATA', 'D10291d0'), ('CCTTTCTCAAAACATA', 'D10291d0'), ('TTGGGGAAATATATAA', 'D10291d0')]
Fit neutralization curves after applying QC¶
No we re-fit curves after applying all the QC:
fits_qc = neutcurve.CurveFits(
frac_infectivity.rename(
columns={
"frac_infectivity_ceiling": "fraction infectivity",
"concentration": "serum concentration",
}
),
conc_col="serum concentration",
fracinf_col="fraction infectivity",
virus_col="strain",
serum_col="serum",
replicate_col="plate_barcode",
fixtop=curvefit_params["fixtop"],
fixbottom=curvefit_params["fixbottom"],
fixslope=curvefit_params["fixslope"],
)
fit_params_qc = fits_qc.fitParams(average_only=False, no_average=True)
assert len(fit_params_qc) <= len(
fits_noqc.fitParams(average_only=False, no_average=True)
)
print(f"Assigning fits for this plate to {group}")
fit_params_qc.insert(0, "group", group)
Assigning fits for this plate to DRIVE
Plot all the curves that passed QC:
if fits_qc.sera:
_ = fits_qc.plotReplicates(
attempt_shared_legend=False,
legendfontsize=8,
titlesize=10,
ticksize=10,
ncol=6,
draw_in_bounds=True,
)
else:
print("No sera passed QC.")
Save results to files¶
print(f"Writing fraction infectivities to {frac_infectivity_csv}")
(
frac_infectivity[
[
"serum",
"strain",
"plate_barcode",
"dilution_factor",
"frac_infectivity_raw",
"frac_infectivity_ceiling",
]
]
.sort_values(["serum", "plate_barcode", "dilution_factor"])
.to_csv(frac_infectivity_csv, index=False, float_format="%.4g")
)
print(f"\nWriting fit parameters to {fits_csv}")
(
fit_params_qc.drop(columns=["nreplicates", "ic50_str"]).to_csv(
fits_csv, index=False, float_format="%.4g"
)
)
print(f"\nPickling neutcurve.CurveFits object for these data to {fits_pickle}")
with open(fits_pickle, "wb") as f:
pickle.dump(fits_qc, f)
print(f"\nWriting QC drops to {qc_drops_yaml}")
def tup_to_str(x):
return " ".join(x) if isinstance(x, tuple) else x
qc_drops_for_yaml = {
key: {tup_to_str(key2): val2 for key2, val2 in val.items()}
for key, val in qc_drops.items()
}
with open(qc_drops_yaml, "w") as f:
yaml.YAML(typ="rt").dump(qc_drops_for_yaml, f)
print("\nHere are the QC drops:\n***************************")
yaml.YAML(typ="rt").dump(qc_drops_for_yaml, sys.stdout)
Writing fraction infectivities to results/plates/plate9/frac_infectivity.csv Writing fit parameters to results/plates/plate9/curvefits.csv Pickling neutcurve.CurveFits object for these data to results/plates/plate9/curvefits.pickle Writing QC drops to results/plates/plate9/qc_drops.yml Here are the QC drops: *************************** wells: {} barcodes: {} barcode_wells: CGGCGTATCGTTCACA H4: max_frac_infectivity_per_viral_barcode_well GCAATCCCGCAATTTG H4: max_frac_infectivity_per_viral_barcode_well barcode_serum_replicates: CGGATAAAAATGATAT D10417d30: manual_drop AGAGAAAAAACAGTGA D10291d0: goodness_of_fit ATGTCCATAAAAAATA D10291d0: goodness_of_fit CCTTTCTCAAAACATA D10291d0: goodness_of_fit TTGGGGAAATATATAA D10291d0: goodness_of_fit serum_replicates: {}