######## snakemake preamble start (automatically inserted, do not edit) ########
import sys;sys.path.extend(['/home/ckikawa/miniforge3/envs/seqneut-pipeline/lib/python3.12/site-packages', '/fh/fast/bloom_j/computational_notebooks/ckikawa/2024/flu_seqneut_H3N2_2023-2024/seqneut-pipeline', '/fh/fast/bloom_j/computational_notebooks/ckikawa/2024/flu_seqneut_H3N2_2023-2024', '/home/ckikawa/miniforge3/envs/seqneut-pipeline/bin', '/home/ckikawa/miniforge3/envs/seqneut-pipeline/lib/python3.12', '/home/ckikawa/miniforge3/envs/seqneut-pipeline/lib/python3.12/lib-dynload', '/home/ckikawa/miniforge3/envs/seqneut-pipeline/lib/python3.12/site-packages', '/home/ckikawa/.cache/snakemake/snakemake/source-cache/runtime-cache/tmpx1s2iqt0/file/fh/fast/bloom_j/computational_notebooks/ckikawa/2024/flu_seqneut_H3N2_2023-2024/seqneut-pipeline/notebooks', '/fh/fast/bloom_j/computational_notebooks/ckikawa/2024/flu_seqneut_H3N2_2023-2024/seqneut-pipeline/notebooks']);import pickle;from snakemake import script;script.snakemake = pickle.loads(b'\x80\x04\x95\xee\xd5\x00\x00\x00\x00\x00\x00\x8c\x10snakemake.script\x94\x8c\tSnakemake\x94\x93\x94)\x81\x94}\x94(\x8c\x05input\x94\x8c\x0csnakemake.io\x94\x8c\nInputFiles\x94\x93\x94)\x81\x94(\x8c6results/barcode_counts/plate32_SCH23_y2014_s029_40.csv\x94\x8c6results/barcode_counts/plate32_SCH23_y2015_s035_40.csv\x94\x8c6results/barcode_counts/plate32_SCH23_y2016_s039_40.csv\x94\x8c6results/barcode_counts/plate32_SCH23_y2018_s046_40.csv\x94\x8c6results/barcode_counts/plate32_SCH23_y2022_s067_40.csv\x94\x8c6results/barcode_counts/plate32_SCH23_y2009_s009_40.csv\x94\x8c6results/barcode_counts/plate32_SCH23_y2018_s047_40.csv\x94\x8c6results/barcode_counts/plate32_SCH23_y2016_s040_40.csv\x94\x8c6results/barcode_counts/plate32_SCH23_y2014_s029_80.csv\x94\x8c6results/barcode_counts/plate32_SCH23_y2015_s035_80.csv\x94\x8c6results/barcode_counts/plate32_SCH23_y2016_s039_80.csv\x94\x8c6results/barcode_counts/plate32_SCH23_y2018_s046_80.csv\x94\x8c6results/barcode_counts/plate32_SCH23_y2022_s067_80.csv\x94\x8c6results/barcode_counts/plate32_SCH23_y2009_s009_80.csv\x94\x8c6results/barcode_counts/plate32_SCH23_y2018_s047_80.csv\x94\x8c6results/barcode_counts/plate32_SCH23_y2016_s040_80.csv\x94\x8c7results/barcode_counts/plate32_SCH23_y2014_s029_160.csv\x94\x8c7results/barcode_counts/plate32_SCH23_y2015_s035_160.csv\x94\x8c7results/barcode_counts/plate32_SCH23_y2016_s039_160.csv\x94\x8c7results/barcode_counts/plate32_SCH23_y2018_s046_160.csv\x94\x8c7results/barcode_counts/plate32_SCH23_y2022_s067_160.csv\x94\x8c7results/barcode_counts/plate32_SCH23_y2009_s009_160.csv\x94\x8c7results/barcode_counts/plate32_SCH23_y2018_s047_160.csv\x94\x8c7results/barcode_counts/plate32_SCH23_y2016_s040_160.csv\x94\x8c7results/barcode_counts/plate32_SCH23_y2014_s029_320.csv\x94\x8c7results/barcode_counts/plate32_SCH23_y2015_s035_320.csv\x94\x8c7results/barcode_counts/plate32_SCH23_y2016_s039_320.csv\x94\x8c7results/barcode_counts/plate32_SCH23_y2018_s046_320.csv\x94\x8c7results/barcode_counts/plate32_SCH23_y2022_s067_320.csv\x94\x8c7results/barcode_counts/plate32_SCH23_y2009_s009_320.csv\x94\x8c7results/barcode_counts/plate32_SCH23_y2018_s047_320.csv\x94\x8c7results/barcode_counts/plate32_SCH23_y2016_s040_320.csv\x94\x8c7results/barcode_counts/plate32_SCH23_y2014_s029_640.csv\x94\x8c7results/barcode_counts/plate32_SCH23_y2015_s035_640.csv\x94\x8c7results/barcode_counts/plate32_SCH23_y2016_s039_640.csv\x94\x8c7results/barcode_counts/plate32_SCH23_y2018_s046_640.csv\x94\x8c7results/barcode_counts/plate32_SCH23_y2022_s067_640.csv\x94\x8c7results/barcode_counts/plate32_SCH23_y2009_s009_640.csv\x94\x8c7results/barcode_counts/plate32_SCH23_y2018_s047_640.csv\x94\x8c7results/barcode_counts/plate32_SCH23_y2016_s040_640.csv\x94\x8c8results/barcode_counts/plate32_SCH23_y2014_s029_1280.csv\x94\x8c8results/barcode_counts/plate32_SCH23_y2015_s035_1280.csv\x94\x8c8results/barcode_counts/plate32_SCH23_y2016_s039_1280.csv\x94\x8c8results/barcode_counts/plate32_SCH23_y2018_s046_1280.csv\x94\x8c8results/barcode_counts/plate32_SCH23_y2022_s067_1280.csv\x94\x8c8results/barcode_counts/plate32_SCH23_y2009_s009_1280.csv\x94\x8c8results/barcode_counts/plate32_SCH23_y2018_s047_1280.csv\x94\x8c8results/barcode_counts/plate32_SCH23_y2016_s040_1280.csv\x94\x8c8results/barcode_counts/plate32_SCH23_y2014_s029_2560.csv\x94\x8c8results/barcode_counts/plate32_SCH23_y2015_s035_2560.csv\x94\x8c8results/barcode_counts/plate32_SCH23_y2016_s039_2560.csv\x94\x8c8results/barcode_counts/plate32_SCH23_y2018_s046_2560.csv\x94\x8c8results/barcode_counts/plate32_SCH23_y2022_s067_2560.csv\x94\x8c8results/barcode_counts/plate32_SCH23_y2009_s009_2560.csv\x94\x8c8results/barcode_counts/plate32_SCH23_y2018_s047_2560.csv\x94\x8c8results/barcode_counts/plate32_SCH23_y2016_s040_2560.csv\x94\x8c8results/barcode_counts/plate32_SCH23_y2014_s029_5120.csv\x94\x8c8results/barcode_counts/plate32_SCH23_y2015_s035_5120.csv\x94\x8c8results/barcode_counts/plate32_SCH23_y2016_s039_5120.csv\x94\x8c8results/barcode_counts/plate32_SCH23_y2018_s046_5120.csv\x94\x8c8results/barcode_counts/plate32_SCH23_y2022_s067_5120.csv\x94\x8c8results/barcode_counts/plate32_SCH23_y2009_s009_5120.csv\x94\x8c8results/barcode_counts/plate32_SCH23_y2018_s047_5120.csv\x94\x8c8results/barcode_counts/plate32_SCH23_y2016_s040_5120.csv\x94\x8c9results/barcode_counts/plate32_SCH23_y2014_s029_10240.csv\x94\x8c9results/barcode_counts/plate32_SCH23_y2015_s035_10240.csv\x94\x8c9results/barcode_counts/plate32_SCH23_y2016_s039_10240.csv\x94\x8c9results/barcode_counts/plate32_SCH23_y2018_s046_10240.csv\x94\x8c9results/barcode_counts/plate32_SCH23_y2022_s067_10240.csv\x94\x8c9results/barcode_counts/plate32_SCH23_y2009_s009_10240.csv\x94\x8c9results/barcode_counts/plate32_SCH23_y2018_s047_10240.csv\x94\x8c9results/barcode_counts/plate32_SCH23_y2016_s040_10240.csv\x94\x8c9results/barcode_counts/plate32_SCH23_y2014_s029_20480.csv\x94\x8c9results/barcode_counts/plate32_SCH23_y2015_s035_20480.csv\x94\x8c9results/barcode_counts/plate32_SCH23_y2016_s039_20480.csv\x94\x8c9results/barcode_counts/plate32_SCH23_y2018_s046_20480.csv\x94\x8c9results/barcode_counts/plate32_SCH23_y2022_s067_20480.csv\x94\x8c9results/barcode_counts/plate32_SCH23_y2009_s009_20480.csv\x94\x8c9results/barcode_counts/plate32_SCH23_y2018_s047_20480.csv\x94\x8c9results/barcode_counts/plate32_SCH23_y2016_s040_20480.csv\x94\x8c9results/barcode_counts/plate32_SCH23_y2014_s029_40960.csv\x94\x8c9results/barcode_counts/plate32_SCH23_y2015_s035_40960.csv\x94\x8c9results/barcode_counts/plate32_SCH23_y2016_s039_40960.csv\x94\x8c9results/barcode_counts/plate32_SCH23_y2018_s046_40960.csv\x94\x8c9results/barcode_counts/plate32_SCH23_y2022_s067_40960.csv\x94\x8c9results/barcode_counts/plate32_SCH23_y2009_s009_40960.csv\x94\x8c9results/barcode_counts/plate32_SCH23_y2018_s047_40960.csv\x94\x8c9results/barcode_counts/plate32_SCH23_y2016_s040_40960.csv\x94\x8c)results/barcode_counts/plate32_none-1.csv\x94\x8c)results/barcode_counts/plate32_none-2.csv\x94\x8c)results/barcode_counts/plate32_none-3.csv\x94\x8c)results/barcode_counts/plate32_none-4.csv\x94\x8c)results/barcode_counts/plate32_none-5.csv\x94\x8c)results/barcode_counts/plate32_none-6.csv\x94\x8c)results/barcode_counts/plate32_none-7.csv\x94\x8c)results/barcode_counts/plate32_none-8.csv\x94\x8c5results/barcode_fates/plate32_SCH23_y2014_s029_40.csv\x94\x8c5results/barcode_fates/plate32_SCH23_y2015_s035_40.csv\x94\x8c5results/barcode_fates/plate32_SCH23_y2016_s039_40.csv\x94\x8c5results/barcode_fates/plate32_SCH23_y2018_s046_40.csv\x94\x8c5results/barcode_fates/plate32_SCH23_y2022_s067_40.csv\x94\x8c5results/barcode_fates/plate32_SCH23_y2009_s009_40.csv\x94\x8c5results/barcode_fates/plate32_SCH23_y2018_s047_40.csv\x94\x8c5results/barcode_fates/plate32_SCH23_y2016_s040_40.csv\x94\x8c5results/barcode_fates/plate32_SCH23_y2014_s029_80.csv\x94\x8c5results/barcode_fates/plate32_SCH23_y2015_s035_80.csv\x94\x8c5results/barcode_fates/plate32_SCH23_y2016_s039_80.csv\x94\x8c5results/barcode_fates/plate32_SCH23_y2018_s046_80.csv\x94\x8c5results/barcode_fates/plate32_SCH23_y2022_s067_80.csv\x94\x8c5results/barcode_fates/plate32_SCH23_y2009_s009_80.csv\x94\x8c5results/barcode_fates/plate32_SCH23_y2018_s047_80.csv\x94\x8c5results/barcode_fates/plate32_SCH23_y2016_s040_80.csv\x94\x8c6results/barcode_fates/plate32_SCH23_y2014_s029_160.csv\x94\x8c6results/barcode_fates/plate32_SCH23_y2015_s035_160.csv\x94\x8c6results/barcode_fates/plate32_SCH23_y2016_s039_160.csv\x94\x8c6results/barcode_fates/plate32_SCH23_y2018_s046_160.csv\x94\x8c6results/barcode_fates/plate32_SCH23_y2022_s067_160.csv\x94\x8c6results/barcode_fates/plate32_SCH23_y2009_s009_160.csv\x94\x8c6results/barcode_fates/plate32_SCH23_y2018_s047_160.csv\x94\x8c6results/barcode_fates/plate32_SCH23_y2016_s040_160.csv\x94\x8c6results/barcode_fates/plate32_SCH23_y2014_s029_320.csv\x94\x8c6results/barcode_fates/plate32_SCH23_y2015_s035_320.csv\x94\x8c6results/barcode_fates/plate32_SCH23_y2016_s039_320.csv\x94\x8c6results/barcode_fates/plate32_SCH23_y2018_s046_320.csv\x94\x8c6results/barcode_fates/plate32_SCH23_y2022_s067_320.csv\x94\x8c6results/barcode_fates/plate32_SCH23_y2009_s009_320.csv\x94\x8c6results/barcode_fates/plate32_SCH23_y2018_s047_320.csv\x94\x8c6results/barcode_fates/plate32_SCH23_y2016_s040_320.csv\x94\x8c6results/barcode_fates/plate32_SCH23_y2014_s029_640.csv\x94\x8c6results/barcode_fates/plate32_SCH23_y2015_s035_640.csv\x94\x8c6results/barcode_fates/plate32_SCH23_y2016_s039_640.csv\x94\x8c6results/barcode_fates/plate32_SCH23_y2018_s046_640.csv\x94\x8c6results/barcode_fates/plate32_SCH23_y2022_s067_640.csv\x94\x8c6results/barcode_fates/plate32_SCH23_y2009_s009_640.csv\x94\x8c6results/barcode_fates/plate32_SCH23_y2018_s047_640.csv\x94\x8c6results/barcode_fates/plate32_SCH23_y2016_s040_640.csv\x94\x8c7results/barcode_fates/plate32_SCH23_y2014_s029_1280.csv\x94\x8c7results/barcode_fates/plate32_SCH23_y2015_s035_1280.csv\x94\x8c7results/barcode_fates/plate32_SCH23_y2016_s039_1280.csv\x94\x8c7results/barcode_fates/plate32_SCH23_y2018_s046_1280.csv\x94\x8c7results/barcode_fates/plate32_SCH23_y2022_s067_1280.csv\x94\x8c7results/barcode_fates/plate32_SCH23_y2009_s009_1280.csv\x94\x8c7results/barcode_fates/plate32_SCH23_y2018_s047_1280.csv\x94\x8c7results/barcode_fates/plate32_SCH23_y2016_s040_1280.csv\x94\x8c7results/barcode_fates/plate32_SCH23_y2014_s029_2560.csv\x94\x8c7results/barcode_fates/plate32_SCH23_y2015_s035_2560.csv\x94\x8c7results/barcode_fates/plate32_SCH23_y2016_s039_2560.csv\x94\x8c7results/barcode_fates/plate32_SCH23_y2018_s046_2560.csv\x94\x8c7results/barcode_fates/plate32_SCH23_y2022_s067_2560.csv\x94\x8c7results/barcode_fates/plate32_SCH23_y2009_s009_2560.csv\x94\x8c7results/barcode_fates/plate32_SCH23_y2018_s047_2560.csv\x94\x8c7results/barcode_fates/plate32_SCH23_y2016_s040_2560.csv\x94\x8c7results/barcode_fates/plate32_SCH23_y2014_s029_5120.csv\x94\x8c7results/barcode_fates/plate32_SCH23_y2015_s035_5120.csv\x94\x8c7results/barcode_fates/plate32_SCH23_y2016_s039_5120.csv\x94\x8c7results/barcode_fates/plate32_SCH23_y2018_s046_5120.csv\x94\x8c7results/barcode_fates/plate32_SCH23_y2022_s067_5120.csv\x94\x8c7results/barcode_fates/plate32_SCH23_y2009_s009_5120.csv\x94\x8c7results/barcode_fates/plate32_SCH23_y2018_s047_5120.csv\x94\x8c7results/barcode_fates/plate32_SCH23_y2016_s040_5120.csv\x94\x8c8results/barcode_fates/plate32_SCH23_y2014_s029_10240.csv\x94\x8c8results/barcode_fates/plate32_SCH23_y2015_s035_10240.csv\x94\x8c8results/barcode_fates/plate32_SCH23_y2016_s039_10240.csv\x94\x8c8results/barcode_fates/plate32_SCH23_y2018_s046_10240.csv\x94\x8c8results/barcode_fates/plate32_SCH23_y2022_s067_10240.csv\x94\x8c8results/barcode_fates/plate32_SCH23_y2009_s009_10240.csv\x94\x8c8results/barcode_fates/plate32_SCH23_y2018_s047_10240.csv\x94\x8c8results/barcode_fates/plate32_SCH23_y2016_s040_10240.csv\x94\x8c8results/barcode_fates/plate32_SCH23_y2014_s029_20480.csv\x94\x8c8results/barcode_fates/plate32_SCH23_y2015_s035_20480.csv\x94\x8c8results/barcode_fates/plate32_SCH23_y2016_s039_20480.csv\x94\x8c8results/barcode_fates/plate32_SCH23_y2018_s046_20480.csv\x94\x8c8results/barcode_fates/plate32_SCH23_y2022_s067_20480.csv\x94\x8c8results/barcode_fates/plate32_SCH23_y2009_s009_20480.csv\x94\x8c8results/barcode_fates/plate32_SCH23_y2018_s047_20480.csv\x94\x8c8results/barcode_fates/plate32_SCH23_y2016_s040_20480.csv\x94\x8c8results/barcode_fates/plate32_SCH23_y2014_s029_40960.csv\x94\x8c8results/barcode_fates/plate32_SCH23_y2015_s035_40960.csv\x94\x8c8results/barcode_fates/plate32_SCH23_y2016_s039_40960.csv\x94\x8c8results/barcode_fates/plate32_SCH23_y2018_s046_40960.csv\x94\x8c8results/barcode_fates/plate32_SCH23_y2022_s067_40960.csv\x94\x8c8results/barcode_fates/plate32_SCH23_y2009_s009_40960.csv\x94\x8c8results/barcode_fates/plate32_SCH23_y2018_s047_40960.csv\x94\x8c8results/barcode_fates/plate32_SCH23_y2016_s040_40960.csv\x94\x8c(results/barcode_fates/plate32_none-1.csv\x94\x8c(results/barcode_fates/plate32_none-2.csv\x94\x8c(results/barcode_fates/plate32_none-3.csv\x94\x8c(results/barcode_fates/plate32_none-4.csv\x94\x8c(results/barcode_fates/plate32_none-5.csv\x94\x8c(results/barcode_fates/plate32_none-6.csv\x94\x8c(results/barcode_fates/plate32_none-7.csv\x94\x8c(results/barcode_fates/plate32_none-8.csv\x94\x8c)data/viral_libraries/2023_H3N2_Kikawa.csv\x94\x8c3data/neut_standard_sets/loes2023_neut_standards.csv\x94e}\x94(\x8c\x06_names\x94}\x94(\x8c\ncount_csvs\x94K\x00K`\x86\x94\x8c\tfate_csvs\x94K`K\xc0\x86\x94\x8c\x11viral_library_csv\x94K\xc0N\x86\x94\x8c\x15neut_standard_set_csv\x94K\xc1N\x86\x94u\x8c\x12_allowed_overrides\x94]\x94(\x8c\x05index\x94\x8c\x04sort\x94eh\xd9h\x06\x8c\x0eAttributeGuard\x94\x93\x94)\x81\x94}\x94\x8c\x04name\x94h\xd9sbh\xdah\xdc)\x81\x94}\x94h\xdfh\xdasbh\xcfh\x06\x8c\tNamedlist\x94\x93\x94)\x81\x94(h\nh\x0bh\x0ch\rh\x0eh\x0fh\x10h\x11h\x12h\x13h\x14h\x15h\x16h\x17h\x18h\x19h\x1ah\x1bh\x1ch\x1dh\x1eh\x1fh h!h"h#h$h%h&h\'h(h)h*h+h,h-h.h/h0h1h2h3h4h5h6h7h8h9h:h;h<h=h>h?h@hAhBhChDhEhFhGhHhIhJhKhLhMhNhOhPhQhRhShThUhVhWhXhYhZh[h\\h]h^h_h`hahbhchdhehfhghhhie}\x94(h\xcd}\x94h\xd7]\x94(h\xd9h\xdaeh\xd9h\xdc)\x81\x94}\x94h\xdfh\xd9sbh\xdah\xdc)\x81\x94}\x94h\xdfh\xdasbubh\xd1h\xe3)\x81\x94(hjhkhlhmhnhohphqhrhshthuhvhwhxhyhzh{h|h}h~h\x7fh\x80h\x81h\x82h\x83h\x84h\x85h\x86h\x87h\x88h\x89h\x8ah\x8bh\x8ch\x8dh\x8eh\x8fh\x90h\x91h\x92h\x93h\x94h\x95h\x96h\x97h\x98h\x99h\x9ah\x9bh\x9ch\x9dh\x9eh\x9fh\xa0h\xa1h\xa2h\xa3h\xa4h\xa5h\xa6h\xa7h\xa8h\xa9h\xaah\xabh\xach\xadh\xaeh\xafh\xb0h\xb1h\xb2h\xb3h\xb4h\xb5h\xb6h\xb7h\xb8h\xb9h\xbah\xbbh\xbch\xbdh\xbeh\xbfh\xc0h\xc1h\xc2h\xc3h\xc4h\xc5h\xc6h\xc7h\xc8h\xc9e}\x94(h\xcd}\x94h\xd7]\x94(h\xd9h\xdaeh\xd9h\xdc)\x81\x94}\x94h\xdfh\xd9sbh\xdah\xdc)\x81\x94}\x94h\xdfh\xdasbubh\xd3h\xcah\xd5h\xcbub\x8c\x06output\x94h\x06\x8c\x0bOutputFiles\x94\x93\x94)\x81\x94(\x8c#results/plates/plate32/qc_drops.yml\x94\x8c+results/plates/plate32/frac_infectivity.csv\x94\x8c$results/plates/plate32/curvefits.csv\x94\x8c\'results/plates/plate32/curvefits.pickle\x94e}\x94(h\xcd}\x94(\x8c\x08qc_drops\x94K\x00N\x86\x94\x8c\x14frac_infectivity_csv\x94K\x01N\x86\x94\x8c\x08fits_csv\x94K\x02N\x86\x94\x8c\x0bfits_pickle\x94K\x03N\x86\x94uh\xd7]\x94(h\xd9h\xdaeh\xd9h\xdc)\x81\x94}\x94h\xdfh\xd9sbh\xdah\xdc)\x81\x94}\x94h\xdfh\xdasbh\xfeh\xf8j\x00\x01\x00\x00h\xf9j\x02\x01\x00\x00h\xfaj\x04\x01\x00\x00h\xfbub\x8c\x06params\x94h\x06\x8c\x06Params\x94\x93\x94)\x81\x94(]\x94(\x8c\x1bplate32_SCH23_y2014_s029_40\x94\x8c\x1bplate32_SCH23_y2015_s035_40\x94\x8c\x1bplate32_SCH23_y2016_s039_40\x94\x8c\x1bplate32_SCH23_y2018_s046_40\x94\x8c\x1bplate32_SCH23_y2022_s067_40\x94\x8c\x1bplate32_SCH23_y2009_s009_40\x94\x8c\x1bplate32_SCH23_y2018_s047_40\x94\x8c\x1bplate32_SCH23_y2016_s040_40\x94\x8c\x1bplate32_SCH23_y2014_s029_80\x94\x8c\x1bplate32_SCH23_y2015_s035_80\x94\x8c\x1bplate32_SCH23_y2016_s039_80\x94\x8c\x1bplate32_SCH23_y2018_s046_80\x94\x8c\x1bplate32_SCH23_y2022_s067_80\x94\x8c\x1bplate32_SCH23_y2009_s009_80\x94\x8c\x1bplate32_SCH23_y2018_s047_80\x94\x8c\x1bplate32_SCH23_y2016_s040_80\x94\x8c\x1cplate32_SCH23_y2014_s029_160\x94\x8c\x1cplate32_SCH23_y2015_s035_160\x94\x8c\x1cplate32_SCH23_y2016_s039_160\x94\x8c\x1cplate32_SCH23_y2018_s046_160\x94\x8c\x1cplate32_SCH23_y2022_s067_160\x94\x8c\x1cplate32_SCH23_y2009_s009_160\x94\x8c\x1cplate32_SCH23_y2018_s047_160\x94\x8c\x1cplate32_SCH23_y2016_s040_160\x94\x8c\x1cplate32_SCH23_y2014_s029_320\x94\x8c\x1cplate32_SCH23_y2015_s035_320\x94\x8c\x1cplate32_SCH23_y2016_s039_320\x94\x8c\x1cplate32_SCH23_y2018_s046_320\x94\x8c\x1cplate32_SCH23_y2022_s067_320\x94\x8c\x1cplate32_SCH23_y2009_s009_320\x94\x8c\x1cplate32_SCH23_y2018_s047_320\x94\x8c\x1cplate32_SCH23_y2016_s040_320\x94\x8c\x1cplate32_SCH23_y2014_s029_640\x94\x8c\x1cplate32_SCH23_y2015_s035_640\x94\x8c\x1cplate32_SCH23_y2016_s039_640\x94\x8c\x1cplate32_SCH23_y2018_s046_640\x94\x8c\x1cplate32_SCH23_y2022_s067_640\x94\x8c\x1cplate32_SCH23_y2009_s009_640\x94\x8c\x1cplate32_SCH23_y2018_s047_640\x94\x8c\x1cplate32_SCH23_y2016_s040_640\x94\x8c\x1dplate32_SCH23_y2014_s029_1280\x94\x8c\x1dplate32_SCH23_y2015_s035_1280\x94\x8c\x1dplate32_SCH23_y2016_s039_1280\x94\x8c\x1dplate32_SCH23_y2018_s046_1280\x94\x8c\x1dplate32_SCH23_y2022_s067_1280\x94\x8c\x1dplate32_SCH23_y2009_s009_1280\x94\x8c\x1dplate32_SCH23_y2018_s047_1280\x94\x8c\x1dplate32_SCH23_y2016_s040_1280\x94\x8c\x1dplate32_SCH23_y2014_s029_2560\x94\x8c\x1dplate32_SCH23_y2015_s035_2560\x94\x8c\x1dplate32_SCH23_y2016_s039_2560\x94\x8c\x1dplate32_SCH23_y2018_s046_2560\x94\x8c\x1dplate32_SCH23_y2022_s067_2560\x94\x8c\x1dplate32_SCH23_y2009_s009_2560\x94\x8c\x1dplate32_SCH23_y2018_s047_2560\x94\x8c\x1dplate32_SCH23_y2016_s040_2560\x94\x8c\x1dplate32_SCH23_y2014_s029_5120\x94\x8c\x1dplate32_SCH23_y2015_s035_5120\x94\x8c\x1dplate32_SCH23_y2016_s039_5120\x94\x8c\x1dplate32_SCH23_y2018_s046_5120\x94\x8c\x1dplate32_SCH23_y2022_s067_5120\x94\x8c\x1dplate32_SCH23_y2009_s009_5120\x94\x8c\x1dplate32_SCH23_y2018_s047_5120\x94\x8c\x1dplate32_SCH23_y2016_s040_5120\x94\x8c\x1eplate32_SCH23_y2014_s029_10240\x94\x8c\x1eplate32_SCH23_y2015_s035_10240\x94\x8c\x1eplate32_SCH23_y2016_s039_10240\x94\x8c\x1eplate32_SCH23_y2018_s046_10240\x94\x8c\x1eplate32_SCH23_y2022_s067_10240\x94\x8c\x1eplate32_SCH23_y2009_s009_10240\x94\x8c\x1eplate32_SCH23_y2018_s047_10240\x94\x8c\x1eplate32_SCH23_y2016_s040_10240\x94\x8c\x1eplate32_SCH23_y2014_s029_20480\x94\x8c\x1eplate32_SCH23_y2015_s035_20480\x94\x8c\x1eplate32_SCH23_y2016_s039_20480\x94\x8c\x1eplate32_SCH23_y2018_s046_20480\x94\x8c\x1eplate32_SCH23_y2022_s067_20480\x94\x8c\x1eplate32_SCH23_y2009_s009_20480\x94\x8c\x1eplate32_SCH23_y2018_s047_20480\x94\x8c\x1eplate32_SCH23_y2016_s040_20480\x94\x8c\x1eplate32_SCH23_y2014_s029_40960\x94\x8c\x1eplate32_SCH23_y2015_s035_40960\x94\x8c\x1eplate32_SCH23_y2016_s039_40960\x94\x8c\x1eplate32_SCH23_y2018_s046_40960\x94\x8c\x1eplate32_SCH23_y2022_s067_40960\x94\x8c\x1eplate32_SCH23_y2009_s009_40960\x94\x8c\x1eplate32_SCH23_y2018_s047_40960\x94\x8c\x1eplate32_SCH23_y2016_s040_40960\x94\x8c\x0eplate32_none-1\x94\x8c\x0eplate32_none-2\x94\x8c\x0eplate32_none-3\x94\x8c\x0eplate32_none-4\x94\x8c\x0eplate32_none-5\x94\x8c\x0eplate32_none-6\x94\x8c\x0eplate32_none-7\x94\x8c\x0eplate32_none-8\x94e}\x94(\x8c\x05group\x94\x8c\x03SCH\x94\x8c\x04date\x94\x8c\n2024-05-30\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c/data/plates/2024-05-30_plate_mapping_file32.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\x08barcodes\x94]\x94\x8c\x10CCAATCCCAGCCTTTA\x94as\x8c\rqc_thresholds\x94}\x94(\x8c\x1bavg_barcode_counts_per_well\x94M\xf4\x01\x8c\x1fmin_neut_standard_frac_per_well\x94G?tz\xe1G\xae\x14{\x8c"no_serum_per_viral_barcode_filters\x94}\x94(\x8c\x08min_frac\x94G?\x1a6\xe2\xeb\x1cC-\x8c\x0fmax_fold_change\x94K\x04\x8c\tmax_wells\x94K\x02u\x8c!per_neut_standard_barcode_filters\x94}\x94(\x8c\x08min_frac\x94G?tz\xe1G\xae\x14{\x8c\x0fmax_fold_change\x94K\x04\x8c\tmax_wells\x94K\x02u\x8c min_neut_standard_count_per_well\x94M\xe8\x03\x8c)min_no_serum_count_per_viral_barcode_well\x94Kd\x8c+max_frac_infectivity_per_viral_barcode_well\x94K\x03\x8c)min_dilutions_per_barcode_serum_replicate\x94K\x06u\x8c\x0fcurvefit_params\x94}\x94(\x8c\x18frac_infectivity_ceiling\x94K\x01\x8c\x06fixtop\x94]\x94(G?\xe3333333K\x01e\x8c\tfixbottom\x94K\x00\x8c\x08fixslope\x94]\x94(G?\xe9\x99\x99\x99\x99\x99\x9aK\neu\x8c\x0bcurvefit_qc\x94}\x94(\x8c\x1dmax_frac_infectivity_at_least\x94G\x00\x00\x00\x00\x00\x00\x00\x00\x8c\x0fgoodness_of_fit\x94}\x94(\x8c\x06min_R2\x94G?\xe0\x00\x00\x00\x00\x00\x00\x8c\x08max_RMSD\x94G?\xc3333333u\x8c#serum_replicates_ignore_curvefit_qc\x94]\x94\x8c+barcode_serum_replicates_ignore_curvefit_qc\x94]\x94u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\x08upstream\x94\x8c\x1cCCTACAATGTCGGATTTGTATTTAATAG\x94\x8c\ndownstream\x94\x8c\x00\x94\x8c\x04minq\x94K\x14\x8c\x11upstream_mismatch\x94K\x04\x8c\x0ebc_orientation\x94\x8c\x02R2\x94\x8c\tupstream2\x94\x8c\x06ATCGAT\x94\x8c\x12upstream2_mismatch\x94K\x01u\x8c\x07samples\x94}\x94(\x8c\x04well\x94}\x94(K\x00\x8c\x02A1\x94K\x01\x8c\x02B1\x94K\x02\x8c\x02C1\x94K\x03\x8c\x02D1\x94K\x04\x8c\x02E1\x94K\x05\x8c\x02F1\x94K\x06\x8c\x02G1\x94K\x07\x8c\x02H1\x94K\x08\x8c\x02A2\x94K\t\x8c\x02B2\x94K\n\x8c\x02C2\x94K\x0b\x8c\x02D2\x94K\x0c\x8c\x02E2\x94K\r\x8c\x02F2\x94K\x0e\x8c\x02G2\x94K\x0f\x8c\x02H2\x94K\x10\x8c\x02A3\x94K\x11\x8c\x02B3\x94K\x12\x8c\x02C3\x94K\x13\x8c\x02D3\x94K\x14\x8c\x02E3\x94K\x15\x8c\x02F3\x94K\x16\x8c\x02G3\x94K\x17\x8c\x02H3\x94K\x18\x8c\x02A4\x94K\x19\x8c\x02B4\x94K\x1a\x8c\x02C4\x94K\x1b\x8c\x02D4\x94K\x1c\x8c\x02E4\x94K\x1d\x8c\x02F4\x94K\x1e\x8c\x02G4\x94K\x1f\x8c\x02H4\x94K \x8c\x02A5\x94K!\x8c\x02B5\x94K"\x8c\x02C5\x94K#\x8c\x02D5\x94K$\x8c\x02E5\x94K%\x8c\x02F5\x94K&\x8c\x02G5\x94K\'\x8c\x02H5\x94K(\x8c\x02A6\x94K)\x8c\x02B6\x94K*\x8c\x02C6\x94K+\x8c\x02D6\x94K,\x8c\x02E6\x94K-\x8c\x02F6\x94K.\x8c\x02G6\x94K/\x8c\x02H6\x94K0\x8c\x02A7\x94K1\x8c\x02B7\x94K2\x8c\x02C7\x94K3\x8c\x02D7\x94K4\x8c\x02E7\x94K5\x8c\x02F7\x94K6\x8c\x02G7\x94K7\x8c\x02H7\x94K8\x8c\x02A8\x94K9\x8c\x02B8\x94K:\x8c\x02C8\x94K;\x8c\x02D8\x94K<\x8c\x02E8\x94K=\x8c\x02F8\x94K>\x8c\x02G8\x94K?\x8c\x02H8\x94K@\x8c\x02A9\x94KA\x8c\x02B9\x94KB\x8c\x02C9\x94KC\x8c\x02D9\x94KD\x8c\x02E9\x94KE\x8c\x02F9\x94KF\x8c\x02G9\x94KG\x8c\x02H9\x94KH\x8c\x03A10\x94KI\x8c\x03B10\x94KJ\x8c\x03C10\x94KK\x8c\x03D10\x94KL\x8c\x03E10\x94KM\x8c\x03F10\x94KN\x8c\x03G10\x94KO\x8c\x03H10\x94KP\x8c\x03A11\x94KQ\x8c\x03B11\x94KR\x8c\x03C11\x94KS\x8c\x03D11\x94KT\x8c\x03E11\x94KU\x8c\x03F11\x94KV\x8c\x03G11\x94KW\x8c\x03H11\x94KX\x8c\x03A12\x94KY\x8c\x03B12\x94KZ\x8c\x03C12\x94K[\x8c\x03D12\x94K\\\x8c\x03E12\x94K]\x8c\x03F12\x94K^\x8c\x03G12\x94K_\x8c\x03H12\x94u\x8c\x05serum\x94}\x94(K\x00\x8c\x10SCH23_y2014_s029\x94K\x01\x8c\x10SCH23_y2015_s035\x94K\x02\x8c\x10SCH23_y2016_s039\x94K\x03\x8c\x10SCH23_y2018_s046\x94K\x04\x8c\x10SCH23_y2022_s067\x94K\x05\x8c\x10SCH23_y2009_s009\x94K\x06\x8c\x10SCH23_y2018_s047\x94K\x07\x8c\x10SCH23_y2016_s040\x94K\x08j\x18\x02\x00\x00K\tj\x19\x02\x00\x00K\nj\x1a\x02\x00\x00K\x0bj\x1b\x02\x00\x00K\x0cj\x1c\x02\x00\x00K\rj\x1d\x02\x00\x00K\x0ej\x1e\x02\x00\x00K\x0fj\x1f\x02\x00\x00K\x10j\x18\x02\x00\x00K\x11j\x19\x02\x00\x00K\x12j\x1a\x02\x00\x00K\x13j\x1b\x02\x00\x00K\x14j\x1c\x02\x00\x00K\x15j\x1d\x02\x00\x00K\x16j\x1e\x02\x00\x00K\x17j\x1f\x02\x00\x00K\x18j\x18\x02\x00\x00K\x19j\x19\x02\x00\x00K\x1aj\x1a\x02\x00\x00K\x1bj\x1b\x02\x00\x00K\x1cj\x1c\x02\x00\x00K\x1dj\x1d\x02\x00\x00K\x1ej\x1e\x02\x00\x00K\x1fj\x1f\x02\x00\x00K j\x18\x02\x00\x00K!j\x19\x02\x00\x00K"j\x1a\x02\x00\x00K#j\x1b\x02\x00\x00K$j\x1c\x02\x00\x00K%j\x1d\x02\x00\x00K&j\x1e\x02\x00\x00K\'j\x1f\x02\x00\x00K(j\x18\x02\x00\x00K)j\x19\x02\x00\x00K*j\x1a\x02\x00\x00K+j\x1b\x02\x00\x00K,j\x1c\x02\x00\x00K-j\x1d\x02\x00\x00K.j\x1e\x02\x00\x00K/j\x1f\x02\x00\x00K0j\x18\x02\x00\x00K1j\x19\x02\x00\x00K2j\x1a\x02\x00\x00K3j\x1b\x02\x00\x00K4j\x1c\x02\x00\x00K5j\x1d\x02\x00\x00K6j\x1e\x02\x00\x00K7j\x1f\x02\x00\x00K8j\x18\x02\x00\x00K9j\x19\x02\x00\x00K:j\x1a\x02\x00\x00K;j\x1b\x02\x00\x00K<j\x1c\x02\x00\x00K=j\x1d\x02\x00\x00K>j\x1e\x02\x00\x00K?j\x1f\x02\x00\x00K@j\x18\x02\x00\x00KAj\x19\x02\x00\x00KBj\x1a\x02\x00\x00KCj\x1b\x02\x00\x00KDj\x1c\x02\x00\x00KEj\x1d\x02\x00\x00KFj\x1e\x02\x00\x00KGj\x1f\x02\x00\x00KHj\x18\x02\x00\x00KIj\x19\x02\x00\x00KJj\x1a\x02\x00\x00KKj\x1b\x02\x00\x00KLj\x1c\x02\x00\x00KMj\x1d\x02\x00\x00KNj\x1e\x02\x00\x00KOj\x1f\x02\x00\x00KPj\x18\x02\x00\x00KQj\x19\x02\x00\x00KRj\x1a\x02\x00\x00KSj\x1b\x02\x00\x00KTj\x1c\x02\x00\x00KUj\x1d\x02\x00\x00KVj\x1e\x02\x00\x00KWj\x1f\x02\x00\x00KX\x8c\x04none\x94KYj \x02\x00\x00KZj \x02\x00\x00K[j \x02\x00\x00K\\j \x02\x00\x00K]j \x02\x00\x00K^j \x02\x00\x00K_j \x02\x00\x00u\x8c\x0fdilution_factor\x94}\x94(K\x00K(K\x01K(K\x02K(K\x03K(K\x04K(K\x05K(K\x06K(K\x07K(K\x08KPK\tKPK\nKPK\x0bKPK\x0cKPK\rKPK\x0eKPK\x0fKPK\x10K\xa0K\x11K\xa0K\x12K\xa0K\x13K\xa0K\x14K\xa0K\x15K\xa0K\x16K\xa0K\x17K\xa0K\x18M@\x01K\x19M@\x01K\x1aM@\x01K\x1bM@\x01K\x1cM@\x01K\x1dM@\x01K\x1eM@\x01K\x1fM@\x01K M\x80\x02K!M\x80\x02K"M\x80\x02K#M\x80\x02K$M\x80\x02K%M\x80\x02K&M\x80\x02K\'M\x80\x02K(M\x00\x05K)M\x00\x05K*M\x00\x05K+M\x00\x05K,M\x00\x05K-M\x00\x05K.M\x00\x05K/M\x00\x05K0M\x00\nK1M\x00\nK2M\x00\nK3M\x00\nK4M\x00\nK5M\x00\nK6M\x00\nK7M\x00\nK8M\x00\x14K9M\x00\x14K:M\x00\x14K;M\x00\x14K<M\x00\x14K=M\x00\x14K>M\x00\x14K?M\x00\x14K@M\x00(KAM\x00(KBM\x00(KCM\x00(KDM\x00(KEM\x00(KFM\x00(KGM\x00(KHM\x00PKIM\x00PKJM\x00PKKM\x00PKLM\x00PKMM\x00PKNM\x00PKOM\x00PKPM\x00\xa0KQM\x00\xa0KRM\x00\xa0KSM\x00\xa0KTM\x00\xa0KUM\x00\xa0KVM\x00\xa0KWM\x00\xa0KXNKYNKZNK[NK\\NK]NK^NK_Nu\x8c\treplicate\x94}\x94(K\x00K\x01K\x01K\x01K\x02K\x01K\x03K\x01K\x04K\x01K\x05K\x01K\x06K\x01K\x07K\x01K\x08K\x01K\tK\x01K\nK\x01K\x0bK\x01K\x0cK\x01K\rK\x01K\x0eK\x01K\x0fK\x01K\x10K\x01K\x11K\x01K\x12K\x01K\x13K\x01K\x14K\x01K\x15K\x01K\x16K\x01K\x17K\x01K\x18K\x01K\x19K\x01K\x1aK\x01K\x1bK\x01K\x1cK\x01K\x1dK\x01K\x1eK\x01K\x1fK\x01K K\x01K!K\x01K"K\x01K#K\x01K$K\x01K%K\x01K&K\x01K\'K\x01K(K\x01K)K\x01K*K\x01K+K\x01K,K\x01K-K\x01K.K\x01K/K\x01K0K\x01K1K\x01K2K\x01K3K\x01K4K\x01K5K\x01K6K\x01K7K\x01K8K\x01K9K\x01K:K\x01K;K\x01K<K\x01K=K\x01K>K\x01K?K\x01K@K\x01KAK\x01KBK\x01KCK\x01KDK\x01KEK\x01KFK\x01KGK\x01KHK\x01KIK\x01KJK\x01KKK\x01KLK\x01KMK\x01KNK\x01KOK\x01KPK\x01KQK\x01KRK\x01KSK\x01KTK\x01KUK\x01KVK\x01KWK\x01KXK\x01KYK\x02KZK\x03K[K\x04K\\K\x05K]K\x06K^K\x07K_K\x08u\x8c\x05fastq\x94}\x94(K\x00\x8c\x7f/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_1_S1_R1_001.fastq.gz\x94K\x01\x8c\x7f/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_2_S2_R1_001.fastq.gz\x94K\x02\x8c\x7f/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_3_S3_R1_001.fastq.gz\x94K\x03\x8c\x7f/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_4_S4_R1_001.fastq.gz\x94K\x04\x8c\x7f/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_5_S5_R1_001.fastq.gz\x94K\x05\x8c\x7f/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_6_S6_R1_001.fastq.gz\x94K\x06\x8c\x7f/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_7_S7_R1_001.fastq.gz\x94K\x07\x8c\x7f/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_8_S8_R1_001.fastq.gz\x94K\x08\x8c\x7f/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_9_S9_R1_001.fastq.gz\x94K\t\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_10_S10_R1_001.fastq.gz\x94K\n\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_11_S11_R1_001.fastq.gz\x94K\x0b\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_12_S12_R1_001.fastq.gz\x94K\x0c\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_13_S13_R1_001.fastq.gz\x94K\r\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_14_S14_R1_001.fastq.gz\x94K\x0e\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_15_S15_R1_001.fastq.gz\x94K\x0f\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_16_S16_R1_001.fastq.gz\x94K\x10\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_17_S17_R1_001.fastq.gz\x94K\x11\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_18_S18_R1_001.fastq.gz\x94K\x12\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_19_S19_R1_001.fastq.gz\x94K\x13\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_20_S20_R1_001.fastq.gz\x94K\x14\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_21_S21_R1_001.fastq.gz\x94K\x15\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_22_S22_R1_001.fastq.gz\x94K\x16\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_23_S23_R1_001.fastq.gz\x94K\x17\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_24_S24_R1_001.fastq.gz\x94K\x18\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_25_S25_R1_001.fastq.gz\x94K\x19\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_26_S26_R1_001.fastq.gz\x94K\x1a\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_27_S27_R1_001.fastq.gz\x94K\x1b\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_28_S28_R1_001.fastq.gz\x94K\x1c\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_29_S29_R1_001.fastq.gz\x94K\x1d\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_30_S30_R1_001.fastq.gz\x94K\x1e\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_31_S31_R1_001.fastq.gz\x94K\x1f\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_32_S32_R1_001.fastq.gz\x94K \x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_33_S33_R1_001.fastq.gz\x94K!\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_34_S34_R1_001.fastq.gz\x94K"\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_35_S35_R1_001.fastq.gz\x94K#\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_36_S36_R1_001.fastq.gz\x94K$\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_37_S37_R1_001.fastq.gz\x94K%\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_38_S38_R1_001.fastq.gz\x94K&\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_39_S39_R1_001.fastq.gz\x94K\'\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_40_S40_R1_001.fastq.gz\x94K(\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_41_S41_R1_001.fastq.gz\x94K)\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_42_S42_R1_001.fastq.gz\x94K*\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_43_S43_R1_001.fastq.gz\x94K+\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_44_S44_R1_001.fastq.gz\x94K,\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_45_S45_R1_001.fastq.gz\x94K-\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_46_S46_R1_001.fastq.gz\x94K.\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_47_S47_R1_001.fastq.gz\x94K/\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_48_S48_R1_001.fastq.gz\x94K0\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_49_S49_R1_001.fastq.gz\x94K1\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_50_S50_R1_001.fastq.gz\x94K2\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_51_S51_R1_001.fastq.gz\x94K3\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_52_S52_R1_001.fastq.gz\x94K4\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_53_S53_R1_001.fastq.gz\x94K5\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_54_S54_R1_001.fastq.gz\x94K6\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_55_S55_R1_001.fastq.gz\x94K7\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_56_S56_R1_001.fastq.gz\x94K8\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_57_S57_R1_001.fastq.gz\x94K9\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_58_S58_R1_001.fastq.gz\x94K:\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_59_S59_R1_001.fastq.gz\x94K;\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_60_S60_R1_001.fastq.gz\x94K<\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_61_S61_R1_001.fastq.gz\x94K=\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_62_S62_R1_001.fastq.gz\x94K>\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_63_S63_R1_001.fastq.gz\x94K?\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_64_S64_R1_001.fastq.gz\x94K@\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_65_S65_R1_001.fastq.gz\x94KA\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_66_S66_R1_001.fastq.gz\x94KB\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_67_S67_R1_001.fastq.gz\x94KC\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_68_S68_R1_001.fastq.gz\x94KD\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_69_S69_R1_001.fastq.gz\x94KE\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_70_S70_R1_001.fastq.gz\x94KF\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_71_S71_R1_001.fastq.gz\x94KG\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_72_S72_R1_001.fastq.gz\x94KH\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_73_S73_R1_001.fastq.gz\x94KI\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_74_S74_R1_001.fastq.gz\x94KJ\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_75_S75_R1_001.fastq.gz\x94KK\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_76_S76_R1_001.fastq.gz\x94KL\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_77_S77_R1_001.fastq.gz\x94KM\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_78_S78_R1_001.fastq.gz\x94KN\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_79_S79_R1_001.fastq.gz\x94KO\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_80_S80_R1_001.fastq.gz\x94KP\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_81_S81_R1_001.fastq.gz\x94KQ\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_82_S82_R1_001.fastq.gz\x94KR\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_83_S83_R1_001.fastq.gz\x94KS\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_84_S84_R1_001.fastq.gz\x94KT\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_85_S85_R1_001.fastq.gz\x94KU\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_86_S86_R1_001.fastq.gz\x94KV\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_87_S87_R1_001.fastq.gz\x94KW\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_88_S88_R1_001.fastq.gz\x94KX\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_89_S89_R1_001.fastq.gz\x94KY\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_90_S90_R1_001.fastq.gz\x94KZ\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_91_S91_R1_001.fastq.gz\x94K[\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_92_S92_R1_001.fastq.gz\x94K\\\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_93_S93_R1_001.fastq.gz\x94K]\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_94_S94_R1_001.fastq.gz\x94K^\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_95_S95_R1_001.fastq.gz\x94K_\x8c\x81/fh/fast/bloom_j/SR/ngs/illumina/bloom_lab/240607_VH00319_519_AACKG5JHV/Unaligned/Project_bloom_lab/PlateA_96_S96_R1_001.fastq.gz\x94u\x8c\x0fserum_replicate\x94}\x94(K\x00j\x18\x02\x00\x00K\x01j\x19\x02\x00\x00K\x02j\x1a\x02\x00\x00K\x03j\x1b\x02\x00\x00K\x04j\x1c\x02\x00\x00K\x05j\x1d\x02\x00\x00K\x06j\x1e\x02\x00\x00K\x07j\x1f\x02\x00\x00K\x08j\x18\x02\x00\x00K\tj\x19\x02\x00\x00K\nj\x1a\x02\x00\x00K\x0bj\x1b\x02\x00\x00K\x0cj\x1c\x02\x00\x00K\rj\x1d\x02\x00\x00K\x0ej\x1e\x02\x00\x00K\x0fj\x1f\x02\x00\x00K\x10j\x18\x02\x00\x00K\x11j\x19\x02\x00\x00K\x12j\x1a\x02\x00\x00K\x13j\x1b\x02\x00\x00K\x14j\x1c\x02\x00\x00K\x15j\x1d\x02\x00\x00K\x16j\x1e\x02\x00\x00K\x17j\x1f\x02\x00\x00K\x18j\x18\x02\x00\x00K\x19j\x19\x02\x00\x00K\x1aj\x1a\x02\x00\x00K\x1bj\x1b\x02\x00\x00K\x1cj\x1c\x02\x00\x00K\x1dj\x1d\x02\x00\x00K\x1ej\x1e\x02\x00\x00K\x1fj\x1f\x02\x00\x00K j\x18\x02\x00\x00K!j\x19\x02\x00\x00K"j\x1a\x02\x00\x00K#j\x1b\x02\x00\x00K$j\x1c\x02\x00\x00K%j\x1d\x02\x00\x00K&j\x1e\x02\x00\x00K\'j\x1f\x02\x00\x00K(j\x18\x02\x00\x00K)j\x19\x02\x00\x00K*j\x1a\x02\x00\x00K+j\x1b\x02\x00\x00K,j\x1c\x02\x00\x00K-j\x1d\x02\x00\x00K.j\x1e\x02\x00\x00K/j\x1f\x02\x00\x00K0j\x18\x02\x00\x00K1j\x19\x02\x00\x00K2j\x1a\x02\x00\x00K3j\x1b\x02\x00\x00K4j\x1c\x02\x00\x00K5j\x1d\x02\x00\x00K6j\x1e\x02\x00\x00K7j\x1f\x02\x00\x00K8j\x18\x02\x00\x00K9j\x19\x02\x00\x00K:j\x1a\x02\x00\x00K;j\x1b\x02\x00\x00K<j\x1c\x02\x00\x00K=j\x1d\x02\x00\x00K>j\x1e\x02\x00\x00K?j\x1f\x02\x00\x00K@j\x18\x02\x00\x00KAj\x19\x02\x00\x00KBj\x1a\x02\x00\x00KCj\x1b\x02\x00\x00KDj\x1c\x02\x00\x00KEj\x1d\x02\x00\x00KFj\x1e\x02\x00\x00KGj\x1f\x02\x00\x00KHj\x18\x02\x00\x00KIj\x19\x02\x00\x00KJj\x1a\x02\x00\x00KKj\x1b\x02\x00\x00KLj\x1c\x02\x00\x00KMj\x1d\x02\x00\x00KNj\x1e\x02\x00\x00KOj\x1f\x02\x00\x00KPj\x18\x02\x00\x00KQj\x19\x02\x00\x00KRj\x1a\x02\x00\x00KSj\x1b\x02\x00\x00KTj\x1c\x02\x00\x00KUj\x1d\x02\x00\x00KVj\x1e\x02\x00\x00KWj\x1f\x02\x00\x00KX\x8c\x06none-1\x94KY\x8c\x06none-2\x94KZ\x8c\x06none-3\x94K[\x8c\x06none-4\x94K\\\x8c\x06none-5\x94K]\x8c\x06none-6\x94K^\x8c\x06none-7\x94K_\x8c\x06none-8\x94u\x8c\x0esample_noplate\x94}\x94(K\x00\x8c\x13SCH23_y2014_s029_40\x94K\x01\x8c\x13SCH23_y2015_s035_40\x94K\x02\x8c\x13SCH23_y2016_s039_40\x94K\x03\x8c\x13SCH23_y2018_s046_40\x94K\x04\x8c\x13SCH23_y2022_s067_40\x94K\x05\x8c\x13SCH23_y2009_s009_40\x94K\x06\x8c\x13SCH23_y2018_s047_40\x94K\x07\x8c\x13SCH23_y2016_s040_40\x94K\x08\x8c\x13SCH23_y2014_s029_80\x94K\t\x8c\x13SCH23_y2015_s035_80\x94K\n\x8c\x13SCH23_y2016_s039_80\x94K\x0b\x8c\x13SCH23_y2018_s046_80\x94K\x0c\x8c\x13SCH23_y2022_s067_80\x94K\r\x8c\x13SCH23_y2009_s009_80\x94K\x0e\x8c\x13SCH23_y2018_s047_80\x94K\x0f\x8c\x13SCH23_y2016_s040_80\x94K\x10\x8c\x14SCH23_y2014_s029_160\x94K\x11\x8c\x14SCH23_y2015_s035_160\x94K\x12\x8c\x14SCH23_y2016_s039_160\x94K\x13\x8c\x14SCH23_y2018_s046_160\x94K\x14\x8c\x14SCH23_y2022_s067_160\x94K\x15\x8c\x14SCH23_y2009_s009_160\x94K\x16\x8c\x14SCH23_y2018_s047_160\x94K\x17\x8c\x14SCH23_y2016_s040_160\x94K\x18\x8c\x14SCH23_y2014_s029_320\x94K\x19\x8c\x14SCH23_y2015_s035_320\x94K\x1a\x8c\x14SCH23_y2016_s039_320\x94K\x1b\x8c\x14SCH23_y2018_s046_320\x94K\x1c\x8c\x14SCH23_y2022_s067_320\x94K\x1d\x8c\x14SCH23_y2009_s009_320\x94K\x1e\x8c\x14SCH23_y2018_s047_320\x94K\x1f\x8c\x14SCH23_y2016_s040_320\x94K \x8c\x14SCH23_y2014_s029_640\x94K!\x8c\x14SCH23_y2015_s035_640\x94K"\x8c\x14SCH23_y2016_s039_640\x94K#\x8c\x14SCH23_y2018_s046_640\x94K$\x8c\x14SCH23_y2022_s067_640\x94K%\x8c\x14SCH23_y2009_s009_640\x94K&\x8c\x14SCH23_y2018_s047_640\x94K\'\x8c\x14SCH23_y2016_s040_640\x94K(\x8c\x15SCH23_y2014_s029_1280\x94K)\x8c\x15SCH23_y2015_s035_1280\x94K*\x8c\x15SCH23_y2016_s039_1280\x94K+\x8c\x15SCH23_y2018_s046_1280\x94K,\x8c\x15SCH23_y2022_s067_1280\x94K-\x8c\x15SCH23_y2009_s009_1280\x94K.\x8c\x15SCH23_y2018_s047_1280\x94K/\x8c\x15SCH23_y2016_s040_1280\x94K0\x8c\x15SCH23_y2014_s029_2560\x94K1\x8c\x15SCH23_y2015_s035_2560\x94K2\x8c\x15SCH23_y2016_s039_2560\x94K3\x8c\x15SCH23_y2018_s046_2560\x94K4\x8c\x15SCH23_y2022_s067_2560\x94K5\x8c\x15SCH23_y2009_s009_2560\x94K6\x8c\x15SCH23_y2018_s047_2560\x94K7\x8c\x15SCH23_y2016_s040_2560\x94K8\x8c\x15SCH23_y2014_s029_5120\x94K9\x8c\x15SCH23_y2015_s035_5120\x94K:\x8c\x15SCH23_y2016_s039_5120\x94K;\x8c\x15SCH23_y2018_s046_5120\x94K<\x8c\x15SCH23_y2022_s067_5120\x94K=\x8c\x15SCH23_y2009_s009_5120\x94K>\x8c\x15SCH23_y2018_s047_5120\x94K?\x8c\x15SCH23_y2016_s040_5120\x94K@\x8c\x16SCH23_y2014_s029_10240\x94KA\x8c\x16SCH23_y2015_s035_10240\x94KB\x8c\x16SCH23_y2016_s039_10240\x94KC\x8c\x16SCH23_y2018_s046_10240\x94KD\x8c\x16SCH23_y2022_s067_10240\x94KE\x8c\x16SCH23_y2009_s009_10240\x94KF\x8c\x16SCH23_y2018_s047_10240\x94KG\x8c\x16SCH23_y2016_s040_10240\x94KH\x8c\x16SCH23_y2014_s029_20480\x94KI\x8c\x16SCH23_y2015_s035_20480\x94KJ\x8c\x16SCH23_y2016_s039_20480\x94KK\x8c\x16SCH23_y2018_s046_20480\x94KL\x8c\x16SCH23_y2022_s067_20480\x94KM\x8c\x16SCH23_y2009_s009_20480\x94KN\x8c\x16SCH23_y2018_s047_20480\x94KO\x8c\x16SCH23_y2016_s040_20480\x94KP\x8c\x16SCH23_y2014_s029_40960\x94KQ\x8c\x16SCH23_y2015_s035_40960\x94KR\x8c\x16SCH23_y2016_s039_40960\x94KS\x8c\x16SCH23_y2018_s046_40960\x94KT\x8c\x16SCH23_y2022_s067_40960\x94KU\x8c\x16SCH23_y2009_s009_40960\x94KV\x8c\x16SCH23_y2018_s047_40960\x94KW\x8c\x16SCH23_y2016_s040_40960\x94KXj\x89\x02\x00\x00KYj\x8a\x02\x00\x00KZj\x8b\x02\x00\x00K[j\x8c\x02\x00\x00K\\j\x8d\x02\x00\x00K]j\x8e\x02\x00\x00K^j\x8f\x02\x00\x00K_j\x90\x02\x00\x00u\x8c\x06sample\x94}\x94(K\x00j\x10\x01\x00\x00K\x01j\x11\x01\x00\x00K\x02j\x12\x01\x00\x00K\x03j\x13\x01\x00\x00K\x04j\x14\x01\x00\x00K\x05j\x15\x01\x00\x00K\x06j\x16\x01\x00\x00K\x07j\x17\x01\x00\x00K\x08j\x18\x01\x00\x00K\tj\x19\x01\x00\x00K\nj\x1a\x01\x00\x00K\x0bj\x1b\x01\x00\x00K\x0cj\x1c\x01\x00\x00K\rj\x1d\x01\x00\x00K\x0ej\x1e\x01\x00\x00K\x0fj\x1f\x01\x00\x00K\x10j \x01\x00\x00K\x11j!\x01\x00\x00K\x12j"\x01\x00\x00K\x13j#\x01\x00\x00K\x14j$\x01\x00\x00K\x15j%\x01\x00\x00K\x16j&\x01\x00\x00K\x17j\'\x01\x00\x00K\x18j(\x01\x00\x00K\x19j)\x01\x00\x00K\x1aj*\x01\x00\x00K\x1bj+\x01\x00\x00K\x1cj,\x01\x00\x00K\x1dj-\x01\x00\x00K\x1ej.\x01\x00\x00K\x1fj/\x01\x00\x00K j0\x01\x00\x00K!j1\x01\x00\x00K"j2\x01\x00\x00K#j3\x01\x00\x00K$j4\x01\x00\x00K%j5\x01\x00\x00K&j6\x01\x00\x00K\'j7\x01\x00\x00K(j8\x01\x00\x00K)j9\x01\x00\x00K*j:\x01\x00\x00K+j;\x01\x00\x00K,j<\x01\x00\x00K-j=\x01\x00\x00K.j>\x01\x00\x00K/j?\x01\x00\x00K0j@\x01\x00\x00K1jA\x01\x00\x00K2jB\x01\x00\x00K3jC\x01\x00\x00K4jD\x01\x00\x00K5jE\x01\x00\x00K6jF\x01\x00\x00K7jG\x01\x00\x00K8jH\x01\x00\x00K9jI\x01\x00\x00K:jJ\x01\x00\x00K;jK\x01\x00\x00K<jL\x01\x00\x00K=jM\x01\x00\x00K>jN\x01\x00\x00K?jO\x01\x00\x00K@jP\x01\x00\x00KAjQ\x01\x00\x00KBjR\x01\x00\x00KCjS\x01\x00\x00KDjT\x01\x00\x00KEjU\x01\x00\x00KFjV\x01\x00\x00KGjW\x01\x00\x00KHjX\x01\x00\x00KIjY\x01\x00\x00KJjZ\x01\x00\x00KKj[\x01\x00\x00KLj\\\x01\x00\x00KMj]\x01\x00\x00KNj^\x01\x00\x00KOj_\x01\x00\x00KPj`\x01\x00\x00KQja\x01\x00\x00KRjb\x01\x00\x00KSjc\x01\x00\x00KTjd\x01\x00\x00KUje\x01\x00\x00KVjf\x01\x00\x00KWjg\x01\x00\x00KXjh\x01\x00\x00KYji\x01\x00\x00KZjj\x01\x00\x00K[jk\x01\x00\x00K\\jl\x01\x00\x00K]jm\x01\x00\x00K^jn\x01\x00\x00K_jo\x01\x00\x00u\x8c\x05plate\x94}\x94(K\x00\x8c\x07plate32\x94K\x01j\xef\x02\x00\x00K\x02j\xef\x02\x00\x00K\x03j\xef\x02\x00\x00K\x04j\xef\x02\x00\x00K\x05j\xef\x02\x00\x00K\x06j\xef\x02\x00\x00K\x07j\xef\x02\x00\x00K\x08j\xef\x02\x00\x00K\tj\xef\x02\x00\x00K\nj\xef\x02\x00\x00K\x0bj\xef\x02\x00\x00K\x0cj\xef\x02\x00\x00K\rj\xef\x02\x00\x00K\x0ej\xef\x02\x00\x00K\x0fj\xef\x02\x00\x00K\x10j\xef\x02\x00\x00K\x11j\xef\x02\x00\x00K\x12j\xef\x02\x00\x00K\x13j\xef\x02\x00\x00K\x14j\xef\x02\x00\x00K\x15j\xef\x02\x00\x00K\x16j\xef\x02\x00\x00K\x17j\xef\x02\x00\x00K\x18j\xef\x02\x00\x00K\x19j\xef\x02\x00\x00K\x1aj\xef\x02\x00\x00K\x1bj\xef\x02\x00\x00K\x1cj\xef\x02\x00\x00K\x1dj\xef\x02\x00\x00K\x1ej\xef\x02\x00\x00K\x1fj\xef\x02\x00\x00K j\xef\x02\x00\x00K!j\xef\x02\x00\x00K"j\xef\x02\x00\x00K#j\xef\x02\x00\x00K$j\xef\x02\x00\x00K%j\xef\x02\x00\x00K&j\xef\x02\x00\x00K\'j\xef\x02\x00\x00K(j\xef\x02\x00\x00K)j\xef\x02\x00\x00K*j\xef\x02\x00\x00K+j\xef\x02\x00\x00K,j\xef\x02\x00\x00K-j\xef\x02\x00\x00K.j\xef\x02\x00\x00K/j\xef\x02\x00\x00K0j\xef\x02\x00\x00K1j\xef\x02\x00\x00K2j\xef\x02\x00\x00K3j\xef\x02\x00\x00K4j\xef\x02\x00\x00K5j\xef\x02\x00\x00K6j\xef\x02\x00\x00K7j\xef\x02\x00\x00K8j\xef\x02\x00\x00K9j\xef\x02\x00\x00K:j\xef\x02\x00\x00K;j\xef\x02\x00\x00K<j\xef\x02\x00\x00K=j\xef\x02\x00\x00K>j\xef\x02\x00\x00K?j\xef\x02\x00\x00K@j\xef\x02\x00\x00KAj\xef\x02\x00\x00KBj\xef\x02\x00\x00KCj\xef\x02\x00\x00KDj\xef\x02\x00\x00KEj\xef\x02\x00\x00KFj\xef\x02\x00\x00KGj\xef\x02\x00\x00KHj\xef\x02\x00\x00KIj\xef\x02\x00\x00KJj\xef\x02\x00\x00KKj\xef\x02\x00\x00KLj\xef\x02\x00\x00KMj\xef\x02\x00\x00KNj\xef\x02\x00\x00KOj\xef\x02\x00\x00KPj\xef\x02\x00\x00KQj\xef\x02\x00\x00KRj\xef\x02\x00\x00KSj\xef\x02\x00\x00KTj\xef\x02\x00\x00KUj\xef\x02\x00\x00KVj\xef\x02\x00\x00KWj\xef\x02\x00\x00KXj\xef\x02\x00\x00KYj\xef\x02\x00\x00KZj\xef\x02\x00\x00K[j\xef\x02\x00\x00K\\j\xef\x02\x00\x00K]j\xef\x02\x00\x00K^j\xef\x02\x00\x00K_j\xef\x02\x00\x00u\x8c\x0fplate_replicate\x94}\x94(K\x00j\xef\x02\x00\x00K\x01j\xef\x02\x00\x00K\x02j\xef\x02\x00\x00K\x03j\xef\x02\x00\x00K\x04j\xef\x02\x00\x00K\x05j\xef\x02\x00\x00K\x06j\xef\x02\x00\x00K\x07j\xef\x02\x00\x00K\x08j\xef\x02\x00\x00K\tj\xef\x02\x00\x00K\nj\xef\x02\x00\x00K\x0bj\xef\x02\x00\x00K\x0cj\xef\x02\x00\x00K\rj\xef\x02\x00\x00K\x0ej\xef\x02\x00\x00K\x0fj\xef\x02\x00\x00K\x10j\xef\x02\x00\x00K\x11j\xef\x02\x00\x00K\x12j\xef\x02\x00\x00K\x13j\xef\x02\x00\x00K\x14j\xef\x02\x00\x00K\x15j\xef\x02\x00\x00K\x16j\xef\x02\x00\x00K\x17j\xef\x02\x00\x00K\x18j\xef\x02\x00\x00K\x19j\xef\x02\x00\x00K\x1aj\xef\x02\x00\x00K\x1bj\xef\x02\x00\x00K\x1cj\xef\x02\x00\x00K\x1dj\xef\x02\x00\x00K\x1ej\xef\x02\x00\x00K\x1fj\xef\x02\x00\x00K j\xef\x02\x00\x00K!j\xef\x02\x00\x00K"j\xef\x02\x00\x00K#j\xef\x02\x00\x00K$j\xef\x02\x00\x00K%j\xef\x02\x00\x00K&j\xef\x02\x00\x00K\'j\xef\x02\x00\x00K(j\xef\x02\x00\x00K)j\xef\x02\x00\x00K*j\xef\x02\x00\x00K+j\xef\x02\x00\x00K,j\xef\x02\x00\x00K-j\xef\x02\x00\x00K.j\xef\x02\x00\x00K/j\xef\x02\x00\x00K0j\xef\x02\x00\x00K1j\xef\x02\x00\x00K2j\xef\x02\x00\x00K3j\xef\x02\x00\x00K4j\xef\x02\x00\x00K5j\xef\x02\x00\x00K6j\xef\x02\x00\x00K7j\xef\x02\x00\x00K8j\xef\x02\x00\x00K9j\xef\x02\x00\x00K:j\xef\x02\x00\x00K;j\xef\x02\x00\x00K<j\xef\x02\x00\x00K=j\xef\x02\x00\x00K>j\xef\x02\x00\x00K?j\xef\x02\x00\x00K@j\xef\x02\x00\x00KAj\xef\x02\x00\x00KBj\xef\x02\x00\x00KCj\xef\x02\x00\x00KDj\xef\x02\x00\x00KEj\xef\x02\x00\x00KFj\xef\x02\x00\x00KGj\xef\x02\x00\x00KHj\xef\x02\x00\x00KIj\xef\x02\x00\x00KJj\xef\x02\x00\x00KKj\xef\x02\x00\x00KLj\xef\x02\x00\x00KMj\xef\x02\x00\x00KNj\xef\x02\x00\x00KOj\xef\x02\x00\x00KPj\xef\x02\x00\x00KQj\xef\x02\x00\x00KRj\xef\x02\x00\x00KSj\xef\x02\x00\x00KTj\xef\x02\x00\x00KUj\xef\x02\x00\x00KVj\xef\x02\x00\x00KWj\xef\x02\x00\x00KX\x8c\tplate32-1\x94KY\x8c\tplate32-2\x94KZ\x8c\tplate32-3\x94K[\x8c\tplate32-4\x94K\\\x8c\tplate32-5\x94K]\x8c\tplate32-6\x94K^\x8c\tplate32-7\x94K_\x8c\tplate32-8\x94uuue}\x94(h\xcd}\x94(j\xb2\x01\x00\x00K\x00N\x86\x94\x8c\x0cplate_params\x94K\x01N\x86\x94uh\xd7]\x94(h\xd9h\xdaeh\xd9h\xdc)\x81\x94}\x94h\xdfh\xd9sbh\xdah\xdc)\x81\x94}\x94h\xdfh\xdasbj\xb2\x01\x00\x00j\x0f\x01\x00\x00j\xfd\x02\x00\x00jp\x01\x00\x00ub\x8c\twildcards\x94h\x06\x8c\tWildcards\x94\x93\x94)\x81\x94\x8c\x07plate32\x94a}\x94(h\xcd}\x94\x8c\x05plate\x94K\x00N\x86\x94sh\xd7]\x94(h\xd9h\xdaeh\xd9h\xdc)\x81\x94}\x94h\xdfh\xd9sbh\xdah\xdc)\x81\x94}\x94h\xdfh\xdasbj\xed\x02\x00\x00j\x08\x03\x00\x00ub\x8c\x07threads\x94K\x01\x8c\tresources\x94h\x06\x8c\tResources\x94\x93\x94)\x81\x94(K\x01K\x01\x8c\x14/loc/scratch/1700788\x94e}\x94(h\xcd}\x94(\x8c\x06_cores\x94K\x00N\x86\x94\x8c\x06_nodes\x94K\x01N\x86\x94\x8c\x06tmpdir\x94K\x02N\x86\x94uh\xd7]\x94(h\xd9h\xdaeh\xd9h\xdc)\x81\x94}\x94h\xdfh\xd9sbh\xdah\xdc)\x81\x94}\x94h\xdfh\xdasbj\x1a\x03\x00\x00K\x01j\x1c\x03\x00\x00K\x01j\x1e\x03\x00\x00j\x17\x03\x00\x00ub\x8c\x03log\x94h\x06\x8c\x03Log\x94\x93\x94)\x81\x94\x8c,results/plates/plate32/process_plate32.ipynb\x94a}\x94(h\xcd}\x94\x8c\x08notebook\x94K\x00N\x86\x94sh\xd7]\x94(h\xd9h\xdaeh\xd9h\xdc)\x81\x94}\x94h\xdfh\xd9sbh\xdah\xdc)\x81\x94}\x94h\xdfh\xdasbj,\x03\x00\x00j)\x03\x00\x00ub\x8c\x06config\x94}\x94(\x8c\x10seqneut-pipeline\x94\x8c\x10seqneut-pipeline\x94\x8c\x04docs\x94\x8c\x04docs\x94\x8c\x0bdescription\x94X\n\x01\x00\x00# Sequencing-based neutralization assays of 2023-2024 human serum samples versus H3N2 influenza libraries\n\nThe numerical data and computer code are at [https://github.com/jbloomlab/flu_seqneut_H3N2_2023-2024](https://github.com/jbloomlab/flu_seqneut_H3N2_2023-2024)\n\x94\x8c\x0fviral_libraries\x94}\x94(\x8c\x0cH3N2_library\x94\x8c)data/viral_libraries/2023_H3N2_Kikawa.csv\x94\x8c\x0cH1N1_library\x94\x8c-data/viral_libraries/pdmH1N1_lib2023_loes.csv\x94u\x8c\x17viral_strain_plot_order\x94\x8c+data/H3N2library_2023-2024_strain_order.csv\x94\x8c\x12neut_standard_sets\x94}\x94\x8c\x08loes2023\x94\x8c3data/neut_standard_sets/loes2023_neut_standards.csv\x94s\x8c\x1eillumina_barcode_parser_params\x94}\x94(j\xa7\x01\x00\x00j\xa8\x01\x00\x00j\xa9\x01\x00\x00j\xaa\x01\x00\x00j\xab\x01\x00\x00K\x14j\xac\x01\x00\x00K\x04j\xad\x01\x00\x00j\xae\x01\x00\x00u\x8c#default_process_plate_qc_thresholds\x94}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?tz\xe1G\xae\x14{j\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06u\x8c%default_process_plate_curvefit_params\x94}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00]\x94(G?\xe3333333K\x01ej\x97\x01\x00\x00K\x00j\x98\x01\x00\x00]\x94(G?\xe9\x99\x99\x99\x99\x99\x9aK\neu\x8c!default_process_plate_curvefit_qc\x94}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00]\x94j\xa3\x01\x00\x00]\x94u\x8c\x16default_serum_titer_as\x94\x8c\x08midpoint\x94\x8c\x1bdefault_serum_qc_thresholds\x94}\x94(\x8c\x0emin_replicates\x94K\x02\x8c\x1bmax_fold_change_from_median\x94K\x06\x8c\x11viruses_ignore_qc\x94]\x94u\x8c\x16sera_override_defaults\x94}\x94\x8c\x06plates\x94}\x94(\x8c\x07plate15\x94}\x94(\x8c\x05group\x94\x8c\x11PennVaccineCohort\x94\x8c\x04date\x94\x8c\x08datetime\x94\x8c\x04date\x94\x93\x94C\x04\x07\xe8\x03\x1c\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c/data/plates/2024-03-28_plate_mapping_file15.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?tz\xe1G\xae\x14{j\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00jO\x03\x00\x00j\x97\x01\x00\x00K\x00j\x98\x01\x00\x00jP\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00jT\x03\x00\x00j\xa3\x01\x00\x00jU\x03\x00\x00uu\x8c\x07plate16\x94}\x94(\x8c\x05group\x94\x8c\x11PennVaccineCohort\x94\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\x04\t\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c/data/plates/2024-04-09_plate_mapping_file16.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?tz\xe1G\xae\x14{j\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00jO\x03\x00\x00j\x97\x01\x00\x00K\x00j\x98\x01\x00\x00jP\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00jT\x03\x00\x00j\xa3\x01\x00\x00jU\x03\x00\x00uu\x8c\x07plate17\x94}\x94(\x8c\x05group\x94\x8c\x03SCH\x94\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\x04\x0b\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c/data/plates/2024-04-11_plate_mapping_file17.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\x05wells\x94]\x94\x8c\x02A9\x94as\x8c\rqc_thresholds\x94}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?tz\xe1G\xae\x14{j\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00jO\x03\x00\x00j\x97\x01\x00\x00K\x00j\x98\x01\x00\x00jP\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00jT\x03\x00\x00j\xa3\x01\x00\x00jU\x03\x00\x00uu\x8c\x07plate18\x94}\x94(\x8c\x05group\x94\x8c\x03SCH\x94\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\x04\x0b\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c/data/plates/2024-04-11_plate_mapping_file18.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?tz\xe1G\xae\x14{j\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00jO\x03\x00\x00j\x97\x01\x00\x00K\x00j\x98\x01\x00\x00jP\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00jT\x03\x00\x00j\xa3\x01\x00\x00jU\x03\x00\x00uu\x8c\x0cplate19_100k\x94}\x94(\x8c\x05group\x94\x8c\x05pilot\x94\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\x04\x10\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c/data/plates/2024-04-23_plate_mapping_file21.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?tz\xe1G\xae\x14{j\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00jO\x03\x00\x00j\x97\x01\x00\x00K\x00j\x98\x01\x00\x00jP\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00jT\x03\x00\x00j\xa3\x01\x00\x00jU\x03\x00\x00uu\x8c\x0cplate20_150k\x94}\x94(\x8c\x05group\x94\x8c\x05pilot\x94\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\x04\x10\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c/data/plates/2024-04-23_plate_mapping_file22.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?tz\xe1G\xae\x14{j\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00jO\x03\x00\x00j\x97\x01\x00\x00K\x00j\x98\x01\x00\x00jP\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00jT\x03\x00\x00j\xa3\x01\x00\x00jU\x03\x00\x00uu\x8c\x0cplate21_200k\x94}\x94(\x8c\x05group\x94\x8c\x05pilot\x94\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\x04\x10\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c/data/plates/2024-04-23_plate_mapping_file23.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?tz\xe1G\xae\x14{j\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00jO\x03\x00\x00j\x97\x01\x00\x00K\x00j\x98\x01\x00\x00jP\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00jT\x03\x00\x00j\xa3\x01\x00\x00jU\x03\x00\x00uu\x8c\x07plate22\x94}\x94(\x8c\x05group\x94\x8c\x11PennVaccineCohort\x94\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\x04\x12\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c/data/plates/2024-04-18_plate_mapping_file19.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?tz\xe1G\xae\x14{j\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00jO\x03\x00\x00j\x97\x01\x00\x00K\x00j\x98\x01\x00\x00jP\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00jT\x03\x00\x00j\xa3\x01\x00\x00jU\x03\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06TGACGC\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate23\x94}\x94(\x8c\x05group\x94\x8c\x11PennVaccineCohort\x94\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\x04\x12\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c/data/plates/2024-04-18_plate_mapping_file20.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?tz\xe1G\xae\x14{j\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00jO\x03\x00\x00j\x97\x01\x00\x00K\x00j\x98\x01\x00\x00jP\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00jT\x03\x00\x00j\xa3\x01\x00\x00jU\x03\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06CAGTTG\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate24\x94}\x94(\x8c\x05group\x94\x8c\x11PennVaccineCohort\x94\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\x05\x02\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c/data/plates/2024-05-02_plate_mapping_file24.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?tz\xe1G\xae\x14{j\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00jO\x03\x00\x00j\x97\x01\x00\x00K\x00j\x98\x01\x00\x00jP\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00jT\x03\x00\x00j\xa3\x01\x00\x00jU\x03\x00\x00uu\x8c\x07plate25\x94}\x94(\x8c\x05group\x94\x8c\x03SCH\x94\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\x05\x14\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c/data/plates/2024-05-20_plate_mapping_file27.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?tz\xe1G\xae\x14{j\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00jO\x03\x00\x00j\x97\x01\x00\x00K\x00j\x98\x01\x00\x00jP\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00jT\x03\x00\x00j\xa3\x01\x00\x00jU\x03\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06TGACGC\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate26\x94}\x94(\x8c\x05group\x94\x8c\x03SCH\x94\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\x05\x14\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c/data/plates/2024-05-20_plate_mapping_file28.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?tz\xe1G\xae\x14{j\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00jO\x03\x00\x00j\x97\x01\x00\x00K\x00j\x98\x01\x00\x00jP\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00jT\x03\x00\x00j\xa3\x01\x00\x00jU\x03\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06CAGTTG\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate27\x94}\x94(\x8c\x05group\x94\x8c\x11PennVaccineCohort\x94\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\x05\x11\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c/data/plates/2024-05-17_plate_mapping_file26.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?PbM\xd2\xf1\xa9\xfcj\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00jO\x03\x00\x00j\x97\x01\x00\x00K\x00j\x98\x01\x00\x00jP\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00jT\x03\x00\x00j\xa3\x01\x00\x00jU\x03\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06GCTACA\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate28\x94}\x94(\x8c\x05group\x94\x8c\x11PennVaccineCohort\x94\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\x05\x11\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c/data/plates/2024-05-17_plate_mapping_file25.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?PbM\xd2\xf1\xa9\xfcj\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00jO\x03\x00\x00j\x97\x01\x00\x00K\x00j\x98\x01\x00\x00jP\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00jT\x03\x00\x00j\xa3\x01\x00\x00jU\x03\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06ATCGAT\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate29\x94}\x94(\x8c\x05group\x94\x8c\x11PennVaccineCohort\x94\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\x05\x1c\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c/data/plates/2024-05-28_plate_mapping_file30.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?tz\xe1G\xae\x14{j\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00jO\x03\x00\x00j\x97\x01\x00\x00K\x00j\x98\x01\x00\x00jP\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00jT\x03\x00\x00j\xa3\x01\x00\x00jU\x03\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06TGACGC\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate30\x94}\x94(\x8c\x05group\x94\x8c\x11PennVaccineCohort\x94\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\x05\x1c\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c/data/plates/2024-05-28_plate_mapping_file29.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?tz\xe1G\xae\x14{j\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00jO\x03\x00\x00j\x97\x01\x00\x00K\x00j\x98\x01\x00\x00jP\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00jT\x03\x00\x00j\xa3\x01\x00\x00jU\x03\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06CAGTTG\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate31\x94}\x94(\x8c\x05group\x94\x8c\x03SCH\x94\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\x05\x1e\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c/data/plates/2024-05-30_plate_mapping_file31.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?tz\xe1G\xae\x14{j\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00jO\x03\x00\x00j\x97\x01\x00\x00K\x00j\x98\x01\x00\x00jP\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00jT\x03\x00\x00j\xa3\x01\x00\x00jU\x03\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06GCTACA\x94\x8c\x12upstream2_mismatch\x94K\x01uuj\xef\x02\x00\x00}\x94(jq\x01\x00\x00jr\x01\x00\x00js\x01\x00\x00ji\x03\x00\x00C\x04\x07\xe8\x05\x1e\x94\x85\x94R\x94ju\x01\x00\x00jv\x01\x00\x00jw\x01\x00\x00jx\x01\x00\x00jy\x01\x00\x00jz\x01\x00\x00j{\x01\x00\x00}\x94j}\x01\x00\x00]\x94j\x7f\x01\x00\x00asj\x80\x01\x00\x00}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?tz\xe1G\xae\x14{j\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06uj\x92\x01\x00\x00}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00jO\x03\x00\x00j\x97\x01\x00\x00K\x00j\x98\x01\x00\x00jP\x03\x00\x00uj\x9a\x01\x00\x00}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00jT\x03\x00\x00j\xa3\x01\x00\x00jU\x03\x00\x00uj\xa5\x01\x00\x00}\x94(j\xaf\x01\x00\x00j\xb0\x01\x00\x00j\xb1\x01\x00\x00K\x01uu\x8c\x07plate33\x94}\x94(\x8c\x05group\x94\x8c\x11PennVaccineCohort\x94\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\x06\x04\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c/data/plates/2024-06-04_plate_mapping_file34.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?tz\xe1G\xae\x14{j\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00jO\x03\x00\x00j\x97\x01\x00\x00K\x00j\x98\x01\x00\x00jP\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00jT\x03\x00\x00j\xa3\x01\x00\x00jU\x03\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06TGACGC\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate34\x94}\x94(\x8c\x05group\x94\x8c\x11PennVaccineCohort\x94\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\x06\x04\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c/data/plates/2024-06-04_plate_mapping_file33.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?tz\xe1G\xae\x14{j\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00jO\x03\x00\x00j\x97\x01\x00\x00K\x00j\x98\x01\x00\x00jP\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00jT\x03\x00\x00j\xa3\x01\x00\x00jU\x03\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06CAGTTG\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate35\x94}\x94(\x8c\x05group\x94\x8c\x11PennVaccineCohort\x94\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\x06\x04\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c/data/plates/2024-07-02_plate_mapping_file36.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?tz\xe1G\xae\x14{j\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00jO\x03\x00\x00j\x97\x01\x00\x00K\x00j\x98\x01\x00\x00jP\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00jT\x03\x00\x00j\xa3\x01\x00\x00jU\x03\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06ATCGAT\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate36\x94}\x94(\x8c\x05group\x94\x8c\x03SCH\x94\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\x05\x1e\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c/data/plates/2024-07-02_plate_mapping_file35.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?tz\xe1G\xae\x14{j\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00jO\x03\x00\x00j\x97\x01\x00\x00K\x00j\x98\x01\x00\x00jP\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00jT\x03\x00\x00j\xa3\x01\x00\x00jU\x03\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06TGACGC\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate37\x94}\x94(\x8c\x05group\x94\x8c\x10AusVaccineCohort\x94\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\t\x18\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c/data/plates/2024-09-24_plate_mapping_file37.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?tz\xe1G\xae\x14{j\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00jO\x03\x00\x00j\x97\x01\x00\x00K\x00j\x98\x01\x00\x00jP\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00jT\x03\x00\x00j\xa3\x01\x00\x00jU\x03\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06ATCGAT\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate38\x94}\x94(\x8c\x05group\x94\x8c\nPooledSera\x94\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\t\x18\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c/data/plates/2024-09-24_plate_mapping_file38.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?tz\xe1G\xae\x14{j\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00jO\x03\x00\x00j\x97\x01\x00\x00K\x00j\x98\x01\x00\x00jP\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00jT\x03\x00\x00j\xa3\x01\x00\x00jU\x03\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06ATCGAT\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate39\x94}\x94(\x8c\x05group\x94\x8c\nPooledSera\x94\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\t\x19\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c/data/plates/2024-09-25_plate_mapping_file40.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?tz\xe1G\xae\x14{j\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00jO\x03\x00\x00j\x97\x01\x00\x00K\x00j\x98\x01\x00\x00jP\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00jT\x03\x00\x00j\xa3\x01\x00\x00jU\x03\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06GCTACA\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate40\x94}\x94(\x8c\x05group\x94\x8c\x10AusVaccineCohort\x94\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\t\x19\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c/data/plates/2024-09-25_plate_mapping_file41.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\x05wells\x94]\x94(\x8c\x03C10\x94\x8c\x03C11\x94es\x8c\rqc_thresholds\x94}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?tz\xe1G\xae\x14{j\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00jO\x03\x00\x00j\x97\x01\x00\x00K\x00j\x98\x01\x00\x00jP\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00jT\x03\x00\x00j\xa3\x01\x00\x00jU\x03\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06GCTACA\x94\x8c\x12upstream2_mismatch\x94K\x01uu\x8c\x07plate41\x94}\x94(\x8c\x05group\x94\x8c\x10AusVaccineCohort\x94\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\t\x19\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c/data/plates/2024-09-25_plate_mapping_file39.csv\x94\x8c\x0cmanual_drops\x94}\x94\x8c\rqc_thresholds\x94}\x94(j\x82\x01\x00\x00M\xf4\x01j\x83\x01\x00\x00G?tz\xe1G\xae\x14{j\x84\x01\x00\x00}\x94(j\x86\x01\x00\x00G?\x1a6\xe2\xeb\x1cC-j\x87\x01\x00\x00K\x04j\x88\x01\x00\x00K\x02uj\x89\x01\x00\x00}\x94(j\x8b\x01\x00\x00G?tz\xe1G\xae\x14{j\x8c\x01\x00\x00K\x04j\x8d\x01\x00\x00K\x02uj\x8e\x01\x00\x00M\xe8\x03j\x8f\x01\x00\x00Kdj\x90\x01\x00\x00K\x03j\x91\x01\x00\x00K\x06u\x8c\x0fcurvefit_params\x94}\x94(j\x94\x01\x00\x00K\x01j\x95\x01\x00\x00jO\x03\x00\x00j\x97\x01\x00\x00K\x00j\x98\x01\x00\x00jP\x03\x00\x00u\x8c\x0bcurvefit_qc\x94}\x94(j\x9c\x01\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00j\x9d\x01\x00\x00}\x94(j\x9f\x01\x00\x00G?\xe0\x00\x00\x00\x00\x00\x00j\xa0\x01\x00\x00G?\xc3333333uj\xa1\x01\x00\x00jT\x03\x00\x00j\xa3\x01\x00\x00jU\x03\x00\x00u\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06ATCGAT\x94\x8c\x12upstream2_mismatch\x94K\x01uuu\x8c\x14miscellaneous_plates\x94}\x94(\x8c\x13240111_initial_H3N2\x94}\x94(\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\x01\x0b\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c=data/miscellaneous_plates/H3N2library_initialPool_samples.csv\x94u\x8c\x12240124_repool_H3N2\x94}\x94(\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\x01\x18\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8cGdata/miscellaneous_plates/2024-01-22_H3N2_sampleData_rePool_MOItest.csv\x94u\x8c\x12240207_repool_H3N2\x94}\x94(\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\x02\x07\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8cGdata/miscellaneous_plates/2024-02-07_H3N2_sampleData_rePool_MOItest.csv\x94u\x8c\x12240207_repool_H1N1\x94}\x94(\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\x02\x07\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH1N1_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8cGdata/miscellaneous_plates/2024-02-07_H1N1_sampleData_rePool_MOItest.csv\x94u\x8c\x1f240328_repool_H3N2_variableCell\x94}\x94(\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\x03\x1c\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8cBdata/miscellaneous_plates/2024-03-28_H3N2_MOItest_variableCell.csv\x94u\x8c\x1c240924_repool_H3N2_balancing\x94}\x94(\x8c\x04date\x94ji\x03\x00\x00C\x04\x07\xe8\t\x18\x94\x85\x94R\x94\x8c\rviral_library\x94\x8c\x0cH3N2_library\x94\x8c\x11neut_standard_set\x94\x8c\x08loes2023\x94\x8c\x0bsamples_csv\x94\x8c>data/miscellaneous_plates/2024-09-24_repool_H3N2_balancing.csv\x94\x8c\x1eillumina_barcode_parser_params\x94}\x94(\x8c\tupstream2\x94\x8c\x06GCTACA\x94\x8c\x12upstream2_mismatch\x94K\x01uuuu\x8c\x04rule\x94\x8c\rprocess_plate\x94\x8c\x0fbench_iteration\x94N\x8c\tscriptdir\x94\x8ck/fh/fast/bloom_j/computational_notebooks/ckikawa/2024/flu_seqneut_H3N2_2023-2024/seqneut-pipeline/notebooks\x94ub.');del script;from snakemake.logging import logger;from snakemake.script import snakemake; logger.printshellcmds = False;import os; os.chdir(r'/fh/fast/bloom_j/computational_notebooks/ckikawa/2024/flu_seqneut_H3N2_2023-2024');
######## snakemake preamble end #########
Process plate counts to get fraction infectivities and fit curves¶
This notebook is designed to be run using snakemake
, and analyzes a plate of sequencing-based neutralization assays.
The plots generated by this notebook are interactive, so you can mouseover points for details, use the mouse-scroll to zoom and pan, and use interactive dropdowns at the bottom of the plots.
Setup¶
Import Python modules:
import pickle
import sys
import altair as alt
import matplotlib.pyplot as plt
import neutcurve
import numpy
import pandas as pd
import ruamel.yaml as yaml
_ = alt.data_transformers.disable_max_rows()
Get the variables passed by snakemake
:
count_csvs = snakemake.input.count_csvs
fate_csvs = snakemake.input.fate_csvs
viral_library_csv = snakemake.input.viral_library_csv
neut_standard_set_csv = snakemake.input.neut_standard_set_csv
qc_drops_yaml = snakemake.output.qc_drops
frac_infectivity_csv = snakemake.output.frac_infectivity_csv
fits_csv = snakemake.output.fits_csv
fits_pickle = snakemake.output.fits_pickle
samples = snakemake.params.samples
plate = snakemake.wildcards.plate
plate_params = snakemake.params.plate_params
# get thresholds turning lists into tuples as needed
manual_drops = {
filter_type: [tuple(w) if isinstance(w, list) else w for w in filter_drops]
for (filter_type, filter_drops) in plate_params["manual_drops"].items()
}
group = plate_params["group"]
qc_thresholds = plate_params["qc_thresholds"]
curvefit_params = plate_params["curvefit_params"]
curvefit_qc = plate_params["curvefit_qc"]
curvefit_qc["barcode_serum_replicates_ignore_curvefit_qc"] = [
tuple(w) for w in curvefit_qc["barcode_serum_replicates_ignore_curvefit_qc"]
]
print(f"Processing {plate=}")
samples_df = pd.DataFrame(plate_params["samples"])
print(f"\nPlate has {len(samples)} samples (wells)")
assert all(
(len(samples_df) == samples_df[c].nunique())
for c in ["well", "sample", "sample_noplate"]
)
assert len(samples_df) == len(
samples_df.groupby(["serum_replicate", "dilution_factor"])
)
assert len(samples) == len(count_csvs) == len(fate_csvs) == len(samples_df)
for d, key, title in [
(manual_drops, "manual_drops", "Data manually specified to drop:"),
(qc_thresholds, "qc_thresholds", "QC thresholds applied to data:"),
(curvefit_params, "curvefit_params", "Curve-fitting parameters:"),
(curvefit_qc, "curvefit_qc", "Curve-fitting QC:"),
]:
print(f"\n{title}")
yaml.YAML(typ="rt").dump({key: d}, stream=sys.stdout)
Processing plate='plate32' Plate has 96 samples (wells) Data manually specified to drop: manual_drops: barcodes: - CCAATCCCAGCCTTTA
QC thresholds applied to data: qc_thresholds: avg_barcode_counts_per_well: 500 min_neut_standard_frac_per_well: 0.005 no_serum_per_viral_barcode_filters: min_frac: 0.0001 max_fold_change: 4 max_wells: 2 per_neut_standard_barcode_filters: min_frac: 0.005 max_fold_change: 4 max_wells: 2 min_neut_standard_count_per_well: 1000 min_no_serum_count_per_viral_barcode_well: 100 max_frac_infectivity_per_viral_barcode_well: 3 min_dilutions_per_barcode_serum_replicate: 6
Curve-fitting parameters: curvefit_params: frac_infectivity_ceiling: 1 fixtop: - 0.6 - 1 fixbottom: 0 fixslope: - 0.8 - 10
Curve-fitting QC: curvefit_qc: max_frac_infectivity_at_least: 0.0 goodness_of_fit: min_R2: 0.5 max_RMSD: 0.15 serum_replicates_ignore_curvefit_qc: [] barcode_serum_replicates_ignore_curvefit_qc: []
Set up dictionary to keep track of wells, barcodes, well-barcodes, and serum-replicates that are dropped:
qc_drops = {
"wells": {},
"barcodes": {},
"barcode_wells": {},
"barcode_serum_replicates": {},
"serum_replicates": {},
}
assert set(manual_drops).issubset(
qc_drops
), f"{manual_drops.keys()=}, {qc_drops.keys()}"
Statistics on barcode-parsing for each sample¶
Make interactive chart of the "fates" of the sequencing reads parsed for each sample on the plate.
If most sequencing reads are not "valid barcodes", this could potentially indicate some problem in the sequencing or barcode set you are parsing.
Potential fates are:
- valid barcode: barcode that matches a known virus or neutralization standard, we hope most reads are this.
- invalid barcode: a barcode with proper flanking sequences, but does not match a known virus or neutralization standard. If you have a lot of reads of this type, it is probably a good idea to look at the invalid barcode CSVs (in the
./results/barcode_invalid/
subdirectory created by the pipeline) to see what these invalid barcodes are. - unparseable barcode: could not parse a barcode from this read as there was not a sequence of the correct length with the appropriate flanking sequence.
- invalid outer flank: if using an outer upstream or downstream region (
upstream2
ordownstream2
for the illuminabarcodeparser), reads that are otherwise valid except for this outer flank. Typically you would be usingupstream2
if you have a plate index embedded in your primer, and reads with this classification correspond to a different index than the one for this plate. - low quality barcode: low-quality or
N
nucleotides in barcode, could indicate problem with sequencing. - failed chastity filter: reads that failed the Illumina chastity filter, if these are reported in the FASTQ (they may not be).
Also, if the number of reads per sample is very uneven, that could indicate that you did not do a good job of balancing the different samples in the Illumina sequencing.
fates = (
pd.concat([pd.read_csv(f).assign(sample=s) for f, s in zip(fate_csvs, samples)])
.merge(samples_df, validate="many_to_one", on="sample")
.assign(
fate_counts=lambda x: x.groupby("fate")["count"].transform("sum"),
sample_well=lambda x: x["sample_noplate"] + " (" + x["well"] + ")",
)
.query("fate_counts > 0")[ # only keep fates with at least one count
["fate", "count", "well", "serum_replicate", "sample_well", "dilution_factor"]
]
)
assert len(fates) == len(fates.drop_duplicates())
serum_replicates = sorted(fates["serum_replicate"].unique())
sample_wells = list(
fates.sort_values(["serum_replicate", "dilution_factor"])["sample_well"]
)
serum_selection = alt.selection_point(
fields=["serum_replicate"],
bind=alt.binding_select(
options=[None] + serum_replicates,
labels=["all"] + serum_replicates,
name="serum",
),
)
fates_chart = (
alt.Chart(fates)
.add_params(serum_selection)
.transform_filter(serum_selection)
.encode(
alt.X("count", scale=alt.Scale(nice=False, padding=3)),
alt.Y(
"sample_well",
title=None,
sort=sample_wells,
),
alt.Color("fate", sort=sorted(fates["fate"].unique(), reverse=True)),
alt.Order("fate", sort="descending"),
tooltip=fates.columns.tolist(),
)
.mark_bar(height={"band": 0.85})
.properties(
height=alt.Step(10),
width=200,
title=f"Barcode parsing for {plate}",
)
.configure_axis(grid=False)
)
fates_chart
Read barcode counts and apply manually specified drops¶
Read the counts per barcode:
# get barcode counts
counts = (
pd.concat([pd.read_csv(c).assign(sample=s) for c, s in zip(count_csvs, samples)])
.merge(samples_df, validate="many_to_one", on="sample")
.drop(columns=["replicate", "plate", "fastq"])
.assign(sample_well=lambda x: x["sample_noplate"] + " (" + x["well"] + ")")
)
# classify barcodes as viral or neut standard
barcode_class = pd.concat(
[
pd.read_csv(viral_library_csv)[["barcode", "strain"]].assign(
neut_standard=False,
),
pd.read_csv(neut_standard_set_csv)[["barcode"]].assign(
neut_standard=True,
strain=pd.NA,
),
],
ignore_index=True,
)
# merge counts and classification of barcodes
assert set(counts["barcode"]) == set(barcode_class["barcode"])
counts = counts.merge(barcode_class, on="barcode", validate="many_to_one")
assert set(sample_wells) == set(counts["sample_well"])
assert set(serum_replicates) == set(counts["serum_replicate"])
Apply any manually specified data drops:
for filter_type, filter_drops in manual_drops.items():
print(f"\nDropping {len(filter_drops)} {filter_type} specified in manual_drops")
assert filter_type in qc_drops
qc_drops[filter_type].update(
{w: "manual_drop" for w in filter_drops if not isinstance(w, list)}
)
if filter_type == "barcode_wells":
counts = counts[
~counts.assign(
barcode_well=lambda x: x.apply(
lambda r: (r["barcode"], r["well"]), axis=1
)
)["barcode_well"].isin(qc_drops[filter_type])
]
elif filter_type == "barcode_serum_replicates":
counts = counts[
~counts.assign(
barcode_serum_replicate=lambda x: x.apply(
lambda r: (r["barcode"], r["serum_replicate"]), axis=1
)
)["barcode_serum_replicate"].isin(qc_drops[filter_type])
]
elif filter_type == "wells":
counts = counts[~counts["well"].isin(qc_drops[filter_type])]
elif filter_type == "barcodes":
counts = counts[~counts["barcode"].isin(qc_drops[filter_type])]
elif filter_type == "serum_replicates":
counts = counts[~counts["serum_replicate"].isin(qc_drops[filter_type])]
elif filter_type == "barcode_serum_replicates":
counts = counts[~counts["barcode_serum_replicate"].isin(qc_drops[filter_type])]
else:
assert filter_type in set(counts.columns)
counts = counts[~counts[filter_type].isin(qc_drops[filter_type])]
Dropping 1 barcodes specified in manual_drops
Average counts per barcode in each well¶
Plot average counts per barcode. If a sample has inadequate barcode counts, it may not have good enough statistics for accurate analysis, and a QC-threshold is applied:
avg_barcode_counts = (
counts.groupby(
["well", "serum_replicate", "sample_well"],
dropna=False,
as_index=False,
)
.aggregate(avg_count=pd.NamedAgg("count", "mean"))
.assign(
fails_qc=lambda x: (
x["avg_count"] < qc_thresholds["avg_barcode_counts_per_well"]
),
)
)
avg_barcode_counts_chart = (
alt.Chart(avg_barcode_counts)
.add_params(serum_selection)
.transform_filter(serum_selection)
.encode(
alt.X(
"avg_count",
title="average barcode counts per well",
scale=alt.Scale(nice=False, padding=3),
),
alt.Y("sample_well", sort=sample_wells),
alt.Color(
"fails_qc",
title=f"fails {qc_thresholds['avg_barcode_counts_per_well']=}",
legend=alt.Legend(titleLimit=500),
),
tooltip=[
alt.Tooltip(c, format=".3g") if avg_barcode_counts[c].dtype == float else c
for c in avg_barcode_counts.columns
],
)
.mark_bar(height={"band": 0.85})
.properties(
height=alt.Step(10),
width=250,
title=f"Average barcode counts per well for {plate}",
)
.configure_axis(grid=False)
)
display(avg_barcode_counts_chart)
# drop wells failing QC
avg_barcode_counts_per_well_drops = list(avg_barcode_counts.query("fails_qc")["well"])
print(
f"\nDropping {len(avg_barcode_counts_per_well_drops)} wells for failing "
f"{qc_thresholds['avg_barcode_counts_per_well']=}: "
+ str(avg_barcode_counts_per_well_drops)
)
qc_drops["wells"].update(
{w: "avg_barcode_counts_per_well" for w in avg_barcode_counts_per_well_drops}
)
counts = counts[~counts["well"].isin(qc_drops["wells"])]
Dropping 0 wells for failing qc_thresholds['avg_barcode_counts_per_well']=500: []
Fraction of counts from neutralization standard¶
Determine the fraction of counts from the neutralization standard in each sample, and make sure this fraction passess the QC threshold.
neut_standard_fracs = (
counts.assign(
neut_standard_count=lambda x: x["count"] * x["neut_standard"].astype(int)
)
.groupby(
["well", "serum_replicate", "sample_well"],
dropna=False,
as_index=False,
)
.aggregate(
total_count=pd.NamedAgg("count", "sum"),
neut_standard_count=pd.NamedAgg("neut_standard_count", "sum"),
)
.assign(
neut_standard_frac=lambda x: x["neut_standard_count"] / x["total_count"],
fails_qc=lambda x: (
x["neut_standard_frac"] < qc_thresholds["min_neut_standard_frac_per_well"]
),
)
)
neut_standard_fracs_chart = (
alt.Chart(neut_standard_fracs)
.add_params(serum_selection)
.transform_filter(serum_selection)
.encode(
alt.X(
"neut_standard_frac",
title="frac counts from neutralization standard per well",
scale=alt.Scale(nice=False, padding=3),
),
alt.Y("sample_well", sort=sample_wells),
alt.Color(
"fails_qc",
title=f"fails {qc_thresholds['min_neut_standard_frac_per_well']=}",
legend=alt.Legend(titleLimit=500),
),
tooltip=[
alt.Tooltip(c, format=".3g") if neut_standard_fracs[c].dtype == float else c
for c in neut_standard_fracs.columns
],
)
.mark_bar(height={"band": 0.85})
.properties(
height=alt.Step(10),
width=250,
title=f"Neutralization-standard fracs per well for {plate}",
)
.configure_axis(grid=False)
.configure_legend(titleLimit=1000)
)
display(neut_standard_fracs_chart)
# drop wells failing QC
min_neut_standard_frac_per_well_drops = list(
neut_standard_fracs.query("fails_qc")["well"]
)
print(
f"\nDropping {len(min_neut_standard_frac_per_well_drops)} wells for failing "
f"{qc_thresholds['min_neut_standard_frac_per_well']=}: "
+ str(min_neut_standard_frac_per_well_drops)
)
qc_drops["wells"].update(
{
w: "min_neut_standard_frac_per_well"
for w in min_neut_standard_frac_per_well_drops
}
)
counts = counts[~counts["well"].isin(qc_drops["wells"])]
Dropping 0 wells for failing qc_thresholds['min_neut_standard_frac_per_well']=0.005: []
Consistency and minimum fractions for barcodes¶
We examine the fraction of counts attributable to each barcode. We do this splitting the data two ways:
Looking at all viral (but not neut-standard) barcodes only for the no-serum samples (wells).
Looking at just the neut-standard barcodes for all samples (wells).
The reasons is that if the experiment is set up perfectly, these fractions should be the same across all samples for each barcode. (We do not expect viral barcodes to have consistent fractions across no-serum samples as they will be neutralized differently depending on strain).
We plot these fractions in interactive plots (you can mouseover points and zoom) so you can identify barcodes that fail the expected consistency QC thresholds.
We also make sure the barcodes meet specified QC minimum thresholds for all samples, and flag any that do not.
barcode_selection = alt.selection_point(fields=["barcode"], on="mouseover", empty=False)
# look at all samples for neut standard barcodes, or no-serum samples for all barcodes
for is_neut_standard, df in counts.groupby("neut_standard"):
if is_neut_standard:
print(
f"\n\n{'=' * 89}\nAnalyzing neut-standard barcodes from all samples (wells)"
)
qc_name = "per_neut_standard_barcode_filters"
else:
print(f"\n\n{'=' * 89}\nAnalyzing all barcodes from no-serum samples (wells)")
qc_name = "no_serum_per_viral_barcode_filters"
df = df.query("serum == 'none'")
df = df.assign(
sample_counts=lambda x: x.groupby("sample")["count"].transform("sum"),
count_frac=lambda x: x["count"] / x["sample_counts"],
median_count_frac=lambda x: x.groupby("barcode")["count_frac"].transform(
"median"
),
fold_change_from_median=lambda x: numpy.where(
x["count_frac"] > x["median_count_frac"],
x["count_frac"] / x["median_count_frac"],
x["median_count_frac"] / x["count_frac"],
),
)[
[
"barcode",
"count",
"well",
"sample_well",
"count_frac",
"median_count_frac",
"fold_change_from_median",
]
+ ([] if is_neut_standard else ["strain"])
]
# barcode fails QC if fails in sufficient wells
qc = qc_thresholds[qc_name]
print(f"Apply QC {qc_name}: {qc}\n")
fails_qc = (
df.assign(
fails_qc=lambda x: ~(
(x["count_frac"] >= qc["min_frac"])
& (x["fold_change_from_median"] <= qc["max_fold_change"])
),
)
.groupby("barcode", as_index=False)
.aggregate(n_wells_fail_qc=pd.NamedAgg("fails_qc", "sum"))
.assign(fails_qc=lambda x: x["n_wells_fail_qc"] >= qc["max_wells"])[
["barcode", "fails_qc"]
]
)
df = df.merge(fails_qc, on="barcode", validate="many_to_one")
# make chart
evenness_chart = (
alt.Chart(df)
.add_params(barcode_selection)
.encode(
alt.X(
"count_frac",
title=(
"barcode's fraction of neut standard counts"
if is_neut_standard
else "barcode's fraction of non-neut standard counts"
),
scale=alt.Scale(nice=False, padding=5),
),
alt.Y("sample_well", sort=sample_wells),
alt.Fill(
"fails_qc",
title=f"fails {qc_name}",
legend=alt.Legend(titleLimit=500),
),
strokeWidth=alt.condition(barcode_selection, alt.value(2), alt.value(0)),
size=alt.condition(barcode_selection, alt.value(60), alt.value(35)),
tooltip=[
alt.Tooltip(c, format=".2g") if df[c].dtype == float else c
for c in df.columns
],
)
.mark_circle(fillOpacity=0.45, stroke="black", strokeOpacity=1)
.properties(
height=alt.Step(10),
width=300,
title=alt.TitleParams(
(
f"{plate} all samples, neut-standard barcodes"
if is_neut_standard
else f"{plate} no-serum samples, all barcodes"
),
subtitle="x-axis is zoomable (use mouse scroll/pan)",
),
)
.configure_axis(grid=False)
.configure_legend(titleLimit=1000)
.interactive()
)
display(evenness_chart)
# drop barcodes failing QC
barcode_drops = list(fails_qc.query("fails_qc")["barcode"])
print(
f"\nDropping {len(barcode_drops)} barcodes for failing {qc=}: {barcode_drops}"
)
qc_drops["barcodes"].update(
{bc: "min_neut_standard_frac_per_well" for bc in barcode_drops}
)
counts = counts[~counts["barcode"].isin(qc_drops["barcodes"])]
========================================================================================= Analyzing all barcodes from no-serum samples (wells) Apply QC no_serum_per_viral_barcode_filters: {'min_frac': 0.0001, 'max_fold_change': 4, 'max_wells': 2}
Dropping 1 barcodes for failing qc={'min_frac': 0.0001, 'max_fold_change': 4, 'max_wells': 2}: ['CCCTCCTCAAGGGTAA'] ========================================================================================= Analyzing neut-standard barcodes from all samples (wells) Apply QC per_neut_standard_barcode_filters: {'min_frac': 0.005, 'max_fold_change': 4, 'max_wells': 2}
Dropping 0 barcodes for failing qc={'min_frac': 0.005, 'max_fold_change': 4, 'max_wells': 2}: []
Compute fraction infectivity¶
The fraction infectivity for viral barcode $v_b$ in sample $s$ is computed as: $$ F_{v_b,s} = \frac{c_{v_b,s} / \left(\sum_{n_b} c_{n_b,s}\right)}{{\rm median}_{s_0}\left[ c_{v_b,s_0} / \left(\sum_{n_b} c_{n_b,s_0}\right)\right]} $$ where
- $c_{v_b,s}$ is the counts of viral barcode $v_b$ in sample $s$.
- $\sum_{n_b} c_{n_b,s}$ is the sum of the counts for all neutralization standard barcodes $n_b$ for sample $s$.
- $c_{v_b,s_0}$ is the counts of viral barcode $v_b$ in no-serum sample $s_0$.
- $\sum_{n_b} c_{n_b,s_0}$ is the sum of the counts for all neutralization standard barcodes $n_b$ for no-serum sample $s_0$.
- ${\rm median}_{s_0}\left[ c_{v_b,s_0} / \left(\sum_{n_b} c_{n_b,s_0}\right)\right]$ is the median taken across all no-serum samples of the counts of viral barcode $v_b$ versus the total counts for all neutralization standard barcodes.
First, compute the total neutralization-standard counts for each sample (well). Plot these, and drop any wells that do not meet the QC threshold.
neut_standard_counts = (
counts.query("neut_standard")
.groupby(
["well", "serum_replicate", "sample_well", "dilution_factor"],
dropna=False,
as_index=False,
)
.aggregate(neut_standard_count=pd.NamedAgg("count", "sum"))
.assign(
fails_qc=lambda x: (
x["neut_standard_count"] < qc_thresholds["min_neut_standard_count_per_well"]
),
)
)
neut_standard_counts_chart = (
alt.Chart(neut_standard_counts)
.add_params(serum_selection)
.transform_filter(serum_selection)
.encode(
alt.X(
"neut_standard_count",
title="counts from neutralization standard",
scale=alt.Scale(nice=False, padding=3),
),
alt.Y("sample_well", sort=sample_wells),
alt.Color(
"fails_qc",
title=f"fails {qc_thresholds['min_neut_standard_count_per_well']=}",
legend=alt.Legend(titleLimit=500),
),
tooltip=[
(
alt.Tooltip(c, format=".3g")
if neut_standard_counts[c].dtype == float
else c
)
for c in neut_standard_counts.columns
],
)
.mark_bar(height={"band": 0.85})
.properties(
height=alt.Step(10),
width=250,
title=f"Neutralization-standard counts for {plate}",
)
.configure_axis(grid=False)
.configure_legend(titleLimit=1000)
)
display(neut_standard_counts_chart)
# drop wells failing QC
min_neut_standard_count_per_well_drops = list(
neut_standard_counts.query("fails_qc")["well"]
)
print(
f"\nDropping {len(min_neut_standard_count_per_well_drops)} wells for failing "
f"{qc_thresholds['min_neut_standard_count_per_well']=}: "
+ str(min_neut_standard_count_per_well_drops)
)
qc_drops["wells"].update(
{
w: "min_neut_standard_count_per_well"
for w in min_neut_standard_count_per_well_drops
}
)
neut_standard_counts = neut_standard_counts[
~neut_standard_counts["well"].isin(qc_drops["wells"])
]
counts = counts[~counts["well"].isin(qc_drops["wells"])]
Dropping 0 wells for failing qc_thresholds['min_neut_standard_count_per_well']=1000: []
Compute and plot the no-serum sample viral barcode counts and check if they pass the QC filters.
no_serum_counts = (
counts.query("serum == 'none'")
.query("not neut_standard")
.merge(neut_standard_counts, validate="many_to_one")[
["barcode", "strain", "well", "sample_well", "count", "neut_standard_count"]
]
.assign(
fails_qc=lambda x: (
x["count"] <= qc_thresholds["min_no_serum_count_per_viral_barcode_well"]
),
)
)
strains = sorted(no_serum_counts["strain"].unique())
strain_selection_dropdown = alt.selection_point(
fields=["strain"],
bind=alt.binding_select(
options=[None] + strains,
labels=["all"] + strains,
name="virus strain",
),
)
# make chart
no_serum_counts_chart = (
alt.Chart(no_serum_counts)
.add_params(barcode_selection, strain_selection_dropdown)
.transform_filter(strain_selection_dropdown)
.encode(
alt.X(
"count", title="viral barcode count", scale=alt.Scale(nice=False, padding=5)
),
alt.Y("sample_well", sort=sample_wells),
alt.Fill(
"fails_qc",
title=f"fails {qc_thresholds['min_no_serum_count_per_viral_barcode_well']=}",
legend=alt.Legend(titleLimit=500),
),
strokeWidth=alt.condition(barcode_selection, alt.value(2), alt.value(0)),
size=alt.condition(barcode_selection, alt.value(60), alt.value(35)),
tooltip=no_serum_counts.columns.tolist(),
)
.mark_circle(fillOpacity=0.6, stroke="black", strokeOpacity=1)
.properties(
height=alt.Step(10),
width=400,
title=f"{plate} viral barcode counts in no-serum samples",
)
.configure_axis(grid=False)
.configure_legend(titleLimit=1000)
.interactive()
)
display(no_serum_counts_chart)
# drop barcode / wells failing QC
min_no_serum_count_per_viral_barcode_well_drops = list(
no_serum_counts.query("fails_qc")[["barcode", "well"]].itertuples(
index=False, name=None
)
)
print(
f"\nDropping {len(min_no_serum_count_per_viral_barcode_well_drops)} barcode-wells for failing "
f"{qc_thresholds['min_no_serum_count_per_viral_barcode_well']=}: "
+ str(min_no_serum_count_per_viral_barcode_well_drops)
)
qc_drops["barcode_wells"].update(
{
w: "min_no_serum_count_per_viral_barcode_well"
for w in min_no_serum_count_per_viral_barcode_well_drops
}
)
no_serum_counts = no_serum_counts[
~no_serum_counts.assign(
barcode_well=lambda x: x.apply(lambda r: (r["barcode"], r["well"]), axis=1)
)["barcode_well"].isin(qc_drops["barcode_wells"])
]
counts = counts[
~counts.assign(
barcode_well=lambda x: x.apply(lambda r: (r["barcode"], r["well"]), axis=1)
)["barcode_well"].isin(qc_drops["barcode_wells"])
]
Dropping 0 barcode-wells for failing qc_thresholds['min_no_serum_count_per_viral_barcode_well']=100: []
Compute and plot the median ratio of viral barcode count to neut standard counts across no-serum samples. If library composition is equal, all of these values should be similar:
median_no_serum_ratio = (
no_serum_counts.assign(ratio=lambda x: x["count"] / x["neut_standard_count"])
.groupby(["barcode", "strain"], as_index=False)
.aggregate(median_no_serum_ratio=pd.NamedAgg("ratio", "median"))
)
strain_selection = alt.selection_point(fields=["strain"], on="mouseover", empty=False)
median_no_serum_ratio_chart = (
alt.Chart(median_no_serum_ratio)
.add_params(strain_selection)
.encode(
alt.X(
"median_no_serum_ratio",
title="median ratio of counts",
scale=alt.Scale(nice=False, padding=5),
),
alt.Y(
"barcode",
sort=alt.SortField("median_no_serum_ratio", order="descending"),
axis=alt.Axis(labelFontSize=5),
),
color=alt.condition(strain_selection, alt.value("orange"), alt.value("gray")),
tooltip=[
(
alt.Tooltip(c, format=".3g")
if median_no_serum_ratio[c].dtype == float
else c
)
for c in median_no_serum_ratio.columns
],
)
.mark_bar(height={"band": 0.85})
.properties(
height=alt.Step(5),
width=250,
title=f"{plate} no-serum median ratio viral barcode to neut-standard barcode",
)
.configure_axis(grid=False)
.configure_legend(titleLimit=1000)
)
display(median_no_serum_ratio_chart)
Compute the actual fraction infectivities. We compute both the raw fraction infectivities and the ones with the ceiling applied:
frac_infectivity = (
counts.query("not neut_standard")
.query("serum != 'none'")
.merge(median_no_serum_ratio, validate="many_to_one")
.merge(neut_standard_counts, validate="many_to_one")
.assign(
frac_infectivity_raw=lambda x: (
(x["count"] / x["neut_standard_count"]) / x["median_no_serum_ratio"]
),
frac_infectivity_ceiling=lambda x: x["frac_infectivity_raw"].clip(
upper=curvefit_params["frac_infectivity_ceiling"]
),
concentration=lambda x: 1 / x["dilution_factor"],
plate_barcode=lambda x: x["plate_replicate"] + "-" + x["barcode"],
)[
[
"barcode",
"plate_barcode",
"well",
"strain",
"serum",
"serum_replicate",
"dilution_factor",
"concentration",
"frac_infectivity_raw",
"frac_infectivity_ceiling",
]
]
)
assert len(
frac_infectivity.groupby(["serum", "plate_barcode", "dilution_factor"])
) == len(frac_infectivity)
assert frac_infectivity["dilution_factor"].notnull().all()
assert frac_infectivity["frac_infectivity_raw"].notnull().all()
assert frac_infectivity["frac_infectivity_ceiling"].notnull().all()
Plot the fraction infectivities, both the raw values and with the ceiling applied:
frac_infectivity_chart_df = (
frac_infectivity.assign(
fails_qc=lambda x: (
x["frac_infectivity_raw"]
> qc_thresholds["max_frac_infectivity_per_viral_barcode_well"]
),
)
.melt(
id_vars=[
"barcode",
"strain",
"well",
"serum_replicate",
"dilution_factor",
"fails_qc",
],
value_vars=["frac_infectivity_raw", "frac_infectivity_ceiling"],
var_name="ceiling_applied",
value_name="frac_infectivity",
)
.assign(
ceiling_applied=lambda x: x["ceiling_applied"].map(
{
"frac_infectivity_raw": "raw fraction infectivity",
"frac_infectivity_ceiling": f"fraction infectivity with ceiling at {curvefit_params['frac_infectivity_ceiling']}",
}
)
)
)
frac_infectivity_chart = (
alt.Chart(frac_infectivity_chart_df)
.add_params(strain_selection_dropdown, barcode_selection)
.transform_filter(strain_selection_dropdown)
.encode(
alt.X(
"dilution_factor",
title="dilution factor",
scale=alt.Scale(nice=False, padding=5, type="log"),
),
alt.Y(
"frac_infectivity",
title="fraction infectivity",
scale=alt.Scale(nice=False, padding=5),
),
alt.Column(
"ceiling_applied",
sort="descending",
title=None,
header=alt.Header(labelFontSize=13, labelFontStyle="bold", labelPadding=2),
),
alt.Row(
"serum_replicate",
title=None,
spacing=3,
header=alt.Header(labelFontSize=13, labelFontStyle="bold"),
),
alt.Detail("barcode"),
alt.Shape(
"fails_qc",
title=f"fails {qc_thresholds['max_frac_infectivity_per_viral_barcode_well']=}",
legend=alt.Legend(titleLimit=500, orient="bottom"),
),
color=alt.condition(
barcode_selection, alt.value("black"), alt.value("MediumBlue")
),
strokeWidth=alt.condition(barcode_selection, alt.value(3), alt.value(1)),
opacity=alt.condition(barcode_selection, alt.value(1), alt.value(0.25)),
tooltip=[
(
alt.Tooltip(c, format=".3g")
if frac_infectivity_chart_df[c].dtype == float
else c
)
for c in frac_infectivity_chart_df.columns
],
)
.mark_line(point=True)
.properties(
height=150,
width=250,
title=f"Fraction infectivities for {plate}",
)
.interactive(bind_x=False)
.configure_axis(grid=False)
.configure_legend(titleLimit=1000)
.configure_point(size=50)
.resolve_scale(x="independent", y="independent")
)
display(frac_infectivity_chart)
# drop barcode / wells failing QC
max_frac_infectivity_per_viral_barcode_well_drops = list(
frac_infectivity_chart_df.query("fails_qc")[["barcode", "well"]]
.drop_duplicates()
.itertuples(index=False, name=None)
)
print(
f"\nDropping {len(max_frac_infectivity_per_viral_barcode_well_drops)} barcode-wells for failing "
f"{qc_thresholds['max_frac_infectivity_per_viral_barcode_well']=}: "
+ str(max_frac_infectivity_per_viral_barcode_well_drops)
)
qc_drops["barcode_wells"].update(
{
w: "max_frac_infectivity_per_viral_barcode_well"
for w in max_frac_infectivity_per_viral_barcode_well_drops
}
)
frac_infectivity = frac_infectivity[
~frac_infectivity.assign(
barcode_well=lambda x: x.apply(lambda r: (r["barcode"], r["well"]), axis=1)
)["barcode_well"].isin(qc_drops["barcode_wells"])
]